ECON4140 Mathematics 3 - on the 2015-05-29 exam

- This note is not suited as a complete solution or as a template for an exam paper, it is too sketchy. It was written as guidance for the grading process - however, with additional notes and remarks for using the document in teaching later.
- For readability, the problems are restated, their respective solutions on the same page.
- Weighting: assigned at the grading committee's discretion. (In case of appeals: the new grading committee assigns weighting at their discretion.) The problem set was written with the intention that a uniform weighting over letter-enumerated items should be a feasible choice, and this - along with it being merely an intention to facilitate which does not tie the committe's hands - has been communicated.

Problem 3 fits this page and the related problem 4 follows:

Problem 3 Let $0<K<Q<1$ be constants and let G be a given function. Consider the differential equation system

$$
\begin{align*}
\dot{x}(t) & =p(t)+Q \\
\dot{p}(t) & =K x(t)-G(t) \tag{D}
\end{align*}
$$

(a) Deduce a second-order differential equation for x, and find the general solution of this equation when $G \equiv 0$. (Hint: For which γ will $x(t)=e^{\gamma t}$ be a particular solution?)
(b) Find the general solution of (D) for the case when $G(t)=K e^{t}$.

On the solution of Problem 3

(a) We have $\ddot{x}(t)=\dot{p}(t)$, so the equation is $\ddot{x}(t)=K x(t)-G(t)$. When $G=0$ we have general solution $C_{1} e^{t \sqrt{K}}+C_{2} e^{-t \sqrt{K}}$ since $K>0$.
(b) For a particular solution for x, $\operatorname{try} L e^{t}$ and fit $L: L e^{t}=K L e^{t}-K e^{t}$, so that $L=$ $K /(K-1)$. This gives x; then $p=\dot{x}-Q$:

$$
\begin{aligned}
& x(t)=C_{1} e^{t \sqrt{K}}+C_{2} e^{-t \sqrt{K}}+\frac{K}{K-1} e^{t} \\
& p(t)=\left(C_{1} e^{t \sqrt{K}}-C_{2} e^{-t \sqrt{K}}\right) \sqrt{K}+\frac{K}{K-1} e^{t}-Q
\end{aligned}
$$

Problem 4 Let $0<K<Q<1$ be constants, and consider the optimal control problem $\max _{u(t) \in \mathbf{R}} \int_{0}^{11}\left\{-\frac{K}{2} \cdot\left[x(t)-e^{t}\right]^{2}-\frac{1}{2}[u(t)]^{2}\right\} d t, \quad \dot{x}=u+Q, \quad x(0)=x_{0}, \quad x(11)$ free.
(a) i) State the conditions from the maximum principle.
ii) Are these conditions also sufficient?
(b) Show that in optimum, x and the adjoint (costate) p must satisfy the differential equation system (D) in problem 3, with $G(t)=K e^{t}$.
(c) Suppose that for some set of parameters the optimal solution ends at $x(11)=11 e^{11}$. Approximately how much would the optimal value change if the final time were reduced from 11 to 10.9 ?

On the solution of Problem 4:

(a) Let $H(t, x, u, p)=-\frac{K}{2}\left(x-e^{t}\right)^{2}-\frac{1}{2} u^{2}+p(u+Q)$. For $\left(x^{*}, u^{*}\right)$ to be optimal, there must be some $p=p(t)$ satisfying the following conditions:

- u^{*} maximizes H over $u \in \mathbb{R}$, i.e. maximizes $p u-\frac{1}{2} u^{2}$;
- $\dot{p}(t)=K\left(x^{*}(t)-e^{t}\right)$ with $p(11)=0$
- $\dot{x}^{*}=u^{*}+Q$ with $x(0)=x_{0}$.
H is concave wrt. (x, u) (being a concave function wrt. x plus a concave wrt. u), so the conditions are sufficient.
(b) To satisfy the conditions, the optimal control is p, so that x satisfies (D); also, the equation for \dot{p} is like in (D).
(c) The derivative wrt. final time is $H\left(11, x^{*}(11), u^{*}(11), p(11)\right)=-\frac{K}{2}\left(11 e^{11}-e^{11}\right)^{2}-0+0$, and a change of $-1 / 10$ yields a value change of $\approx \frac{K}{20}\left(10 e^{11}\right)^{2}=5 K e^{22}$.

Problem 1 Define for each $h \in \mathbf{R}$ the following matrices
$\mathbf{A}_{h}=\left(\begin{array}{cc}5-h & 3 \\ 3 & 4-h \\ 2 & 3\end{array}\right), \quad \mathbf{b}_{h}=\left(\begin{array}{c}2 \\ 3 \\ 5-h\end{array}\right), \quad \mathbf{C}_{h}=\left(\begin{array}{ccc}5-h & 3 & 2 \\ 3 & 4-h & 3 \\ 2 & 3 & 5-h\end{array}\right), \quad \mathbf{M}=\mathbf{C}_{0}$
(where \mathbf{C}_{0} denotes \mathbf{C}_{h} with $h=0$). Observe that $\mathbf{C}_{h}=\mathbf{M}-h \mathbf{I}=\left(\mathbf{A}_{h} \mid \mathbf{b}_{h}\right)$.
(a) $\mathbf{u}=(1,-2,1)^{\prime}$ is an eigenvector of \mathbf{M}. Find a corresponding eigenvalue λ_{1}. (You shall obtain that $0<\lambda_{1}<3$.)
(b) $\lambda_{2}=3$ is an eigenvalue of \mathbf{M}. Find a corresponding eigenvector \mathbf{v}. (You shall obtain an answer such that $v_{1} v_{3}<0$.)
(c) It is a fact that \mathbf{M} has an eigenvector \mathbf{w} with all coordinates nonnegative. Show why this fact together with parts (a) and (b) imply that \mathbf{M} must be positive definite.
(You are required to use precisely these pieces of information; you will not be rewarded for using other calculations.)
(d) Show that \mathbf{A}_{h} has rank 2 no matter what h is.
(e) Decide whether the following statement is true or false: "The equation system $\mathbf{A}_{h}\binom{p}{q}=\mathbf{b}_{h}$ has a solution $\binom{p}{q}$ if and only if h is an eigenvalue for \mathbf{M}."

On the solution of Problem 1

(a) Calculate $\mathbf{M u}$ to get \mathbf{u}, so that $\lambda_{1}=1$.
(b) The first and last row of \mathbf{C}_{3} are the same (delete one), while the top-left 2×2 minor is nonzero. Subtract $3 / 2$ of the first row from the second to get that $v_{2}=0$. Then $v_{1}+v_{3}=0$, so $\mathbf{v}=(1,0,-1)^{\prime}$ (or any nonzero scaling) is an eigenvector corresponding to $\lambda_{2}=3$.
(c) From parts (a) and (b), \mathbf{w} is indeed a third eigenvector, and since λ_{1} and λ_{2} are >0, we have M positive definite iff the third eigenvalue is positive too. Which it is: Because each element of Mw is the sum of nonnegative numbers - not all zero, because \mathbf{M} isn't null and \mathbf{w} is an eigenvector and cannot be null - the eigenvalue cannot be ≤ 0.
(d) The bottom 2×2 minor is nonzero except when $8-2 h=9$ i.e. $h=-1 / 2$. For $h=-1 / 2$, some other 2×2 minor is nonzero: $\left|\begin{array}{c}5-h \\ 2\end{array}\right|=9-3 h$ is >0 for $h=-1 / 2$ (and the last 2×2 minor is nonzero too).
(e) True: there is solution iff \mathbf{C}_{h} and \mathbf{A}_{h} have same rank, and since \mathbf{A}_{h} is a block in \mathbf{C}_{h}, then $\operatorname{rank}\left(\mathbf{C}_{h}\right) \geq \operatorname{rank}\left(\mathbf{A}_{h}\right)=2$. Thus the ranks match iff $\operatorname{rank}\left(\mathbf{C}_{h}\right)<3$ i.e. iff $0=\left|\mathbf{C}_{h}\right|=|\mathbf{M}-h \mathbf{I}|$ i.e. iff h is an eigenvalue for \mathbf{M}.

Problem 2 Given constants $r \geq 0, s>0$ and $t>0$, a vector $\mathbf{m} \in \mathbf{R}^{n}$ such that $1=m_{1} \geq m_{2} \geq \ldots m_{n} \geq 0$, and for $\mathbf{x} \in \mathbf{R}^{n}$ the functions
$g(\mathbf{x})=\left|x_{1}\right|+\ldots+\left|x_{n}\right|, \quad F(\mathbf{x})=\mathbf{m}^{\prime} \mathbf{x}-s g(\mathbf{x})+(s-1) t, \quad H(\mathbf{x})=F(\mathbf{x})-r \max _{i}\left|x_{i}\right|$ (where $\max _{i}\left|x_{i}\right|$ means the greatest of the n numbers $\left|x_{1}\right|, \ldots,\left|x_{n}\right|$).
(a) i) Show that H is concave for every $r \geq 0, s>0$.
ii) Consider part (b) below. Explain why the existence of such an s as asked for in part (b), will show that $\mathbf{x}^{*}=(t, 0, \ldots, 0)^{\prime}$ solves the nonlinear programming problem

$$
\max _{\mathbf{x}} \mathbf{m}^{\prime} \mathbf{x} \quad \text { subject to } g(\mathbf{x}) \leq t
$$

(b) Find an $s \in[0,1]$ such that $\mathbf{0}$ is a supergradient for F at $\mathbf{x}^{*}=(t, 0, \ldots, 0)^{\prime}$.

Hint: Explain why it suffices to show that F attains a (local or global) maximum at \mathbf{x}^{*}, and then show that this happens for some $s \geq 0$. You shall get that $m_{n} \leq s \leq m_{1}$ and also that s does not depend on t (if you need to, check the case $t=1$ first).

On the solution of Problem 2

(a) i): the absolute value is a convex function, the max of convexes is convex, and $-r \leq 0$. The linear and constant terms do not affect concavity/convexity, and since $s>0$ it suffices to show g convex - and it is a sum of convexes.
ii): F is the Lagrangian of the problem, with s being the multiplier. Part (b) then restates the sufficient condition for the concave programming problem to have a solution at \mathbf{x}^{*} (where the constraint is active, so any $s \geq 0$ will do - we need not have $s \leq 1$, but it is certainly sufficient).
(b) For a local max, $\mathbf{0}$ is a supergradient. We have $F(\mathbf{x})=\sum_{i}\left(m_{i} x_{i}-s\left|x_{i}\right|\right)$ plus a constant, and it suffices to find an s such that \mathbf{x}^{*} (locally) maximizes. We can consider each coordinate x_{i} separately: Any $s \geq m_{2}$ will make 0 maximize $m_{i} z-s|z|$ for $i \geq 2$, while $s=m_{1}=1$ makes $m_{1} z-s|z|$ identically zero for $z \geq 0-$ hence $z=t$ is a local max.

