UNIVERSITY OF OSLO
 DEPARTMENT OF ECONOMICS

Exam: ECON4140 - Mathematics 3: Differential equations, static and dynamic optimization

Date of exam: Friday, May 29, 2015
Grades are given: June 10, 2015
Time for exam: 2.30 p.m. -5.30 p.m.
The problem set covers 2 pages of text (not incl. the cover sheet)
Resources allowed:

- All written and printed resources, as well as calculator, is allowed

The grades given: A-F, with A as the best and E as the weakest passing grade. F is fail.

ECON4140 Mathematics 3

May 29th 2015, 1430-1730.
There are 2 pages of problems to be solved.
All printed and written material may be used, as well as pocket calculators.
Grades given run from A (best) to E for passes, and F for fail.

- You are required to state reasons for all your answers.
- You are permitted to use any information stated in an earlier part or item (e.g. "(a)" or "i)") to solve a later one (e.g. "(c)" or "ii)"), regardless of whether you managed to answer the former. A later part or item does not necessarily utilize answers from or information given in a previous one.

Problem 1 Define for each $h \in \mathbf{R}$ the following matrices
$\mathbf{A}_{h}=\left(\begin{array}{cc}5-h & 3 \\ 3 & 4-h \\ 2 & 3\end{array}\right), \quad \mathbf{b}_{h}=\left(\begin{array}{c}2 \\ 3 \\ 5-h\end{array}\right), \quad \mathbf{C}_{h}=\left(\begin{array}{ccc}5-h & 3 & 2 \\ 3 & 4-h & 3 \\ 2 & 3 & 5-h\end{array}\right), \quad \mathbf{M}=\mathbf{C}_{0}$
(where \mathbf{C}_{0} denotes \mathbf{C}_{h} with $h=0$). Observe that $\mathbf{C}_{h}=\mathbf{M}-h \mathbf{I}=\left(\mathbf{A}_{h} \mid \mathbf{b}_{h}\right)$.
(a) $\mathbf{u}=(1,-2,1)^{\prime}$ is an eigenvector of \mathbf{M}. Find a corresponding eigenvalue λ_{1}. (You shall obtain that $0<\lambda_{1}<3$.)
(b) $\lambda_{2}=3$ is an eigenvalue of \mathbf{M}. Find a corresponding eigenvector \mathbf{v}. (You shall obtain an answer such that $v_{1} v_{3}<0$.)
(c) It is a fact that \mathbf{M} has an eigenvector \mathbf{w} with all coordinates nonnegative. Show why this fact together with parts (a) and (b) imply that M must be positive definite. (You are required to use precisely these pieces of information; you will not be rewarded for using other calculations.)
(d) Show that \mathbf{A}_{h} has rank 2 no matter what h is.
(e) Decide whether the following statement is true or false: "The equation system $\mathbf{A}_{h}\binom{p}{q}=\mathbf{b}_{h}$ has a solution $\binom{p}{q}$ if and only if h is an eigenvalue for \mathbf{M}."

Problem 2 Given constants $r \geq 0, s>0$ and $t>0$, a vector $\mathbf{m} \in \mathbf{R}^{n}$ such that $1=m_{1} \geq m_{2} \geq \ldots m_{n} \geq 0$, and for $\mathbf{x} \in \mathbf{R}^{n}$ the functions
$g(\mathbf{x})=\left|x_{1}\right|+\ldots+\left|x_{n}\right|, \quad F(\mathbf{x})=\mathbf{m}^{\prime} \mathbf{x}-s g(\mathbf{x})+(s-1) t, \quad H(\mathbf{x})=F(\mathbf{x})-r \max _{i}\left|x_{i}\right|$
(where $\max _{i}\left|x_{i}\right|$ means the greatest of the n numbers $\left|x_{1}\right|, \ldots,\left|x_{n}\right|$).
(a) i) Show that H is concave for every $r \geq 0, s>0$.
ii) Consider part (b) below. Explain why the existence of such an s as asked for in part (b), will show that $\mathbf{x}^{*}=(t, 0, \ldots, 0)^{\prime}$ solves the nonlinear programming problem

$$
\max _{\mathbf{x}} \mathrm{m}^{\prime} \mathbf{x} \quad \text { subject to } \quad g(\mathbf{x}) \leq t
$$

(b) Find an $s \in[0,1]$ such that $\mathbf{0}$ is a supergradient for F at $\mathbf{x}^{*}=(t, 0, \ldots, 0)^{\prime}$. Hint: Explain why it suffices to show that F attains a (local or global) maximum at \mathbf{x}^{*}, and then show that this happens for some $s \geq 0$. You shall get that $m_{n} \leq s \leq m_{1}$ and also that s does not depend on t (if you need to, check the case $t=1$ first).

Problem 3 Let $0<K<Q<1$ be constants and let G be a given function. Consider the differential equation system

$$
\begin{align*}
& \dot{x}(t)=p(t)+Q \tag{D}\\
& \dot{p}(t)=K x(t)-G(t)
\end{align*}
$$

(a) Deduce a second-order differential equation for x, and find the general solution of this equation when $G \equiv 0$. (Hint: For which γ will $x(t)=e^{\gamma t}$ be a particular solution?)
(b) Find the general solution of (D) for the case when $G(t)=K e^{t}$.

Problem 4 Let $0<K<Q<1$ be constants, and consider the optimal control problem

$$
\max _{u(t) \in \mathbf{R}} \int_{0}^{11}\left\{-\frac{K}{2} \cdot\left[x(t)-e^{t}\right]^{2}-\frac{1}{2}[u(t)]^{2}\right\} d t, \quad \dot{x}=u+Q, \quad x(0)=x_{0}, \quad x(11) \text { free. }
$$

(a) i) State the conditions from the maximum principle.
ii) Are these conditions also sufficient?
(b) Show that in optimum, x and the adjoint (costate) p must satisfy the differential equation system (D) in problem 3, with $G(t)=K e^{t}$.
(c) Suppose that for some set of parameters the optimal solution ends at $x(11)=11 e^{11}$. Approximately how much would the optimal value change if the final time were reduced from 11 to 10.9 ?

