UNIVERSITY OF OSLO
 DEPARTMENT OF ECONOMICS

Exam: ECON4140 - Mathematics 3: Differential Equations, Static and Dynamic

 OptimizationDate of exam: Wednesday, May 24, 2017 Grades are given: June 14, 2017
Time for exam: 2.30 p.m. -5.30 p.m.
The problem set covers 4 pages (incl. cover sheet)
Resources allowed:

- Open book exam. All written and printed resources - as well as calculator - is allowed

The grades given: A-F, with A as the best and E as the weakest passing grade. F is fail.

ECON4140 Mathematics 3

May 24th 2017, 1430-1730.
There are 3 pages of problems to be solved (including a figure on the last page).
All printed and written material may be used, as well as pocket calculators.
Grades given run from A (best) to E for passes, and F for fail.

- You are required to state reasons for all your answers.
- You are permitted to use any information stated in an earlier letter-enumerated item (e.g. "(a)") to solve a later one (e.g. "(c)"), regardless of whether you managed to answer the former. A later item does not necessarily require answers from or information given in a previous one.
- "Suggested" weights: the grading committee is free to deviate.

Problem 1 Suggested weight: 25%. In this problem, let $\mathbf{A}=\left(\begin{array}{cc}4 & 1 \\ 2 & -3\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{cc}-4 & 1 \\ 2 & -3\end{array}\right)$ and let (S) be the nonlinear differential equation system

$$
\begin{align*}
& \dot{x}=y+x^{4}-1 \\
& \dot{y}=x^{3}-x-3 y \tag{S}
\end{align*}
$$

(a) Consider in this part each of the differential equation systems $\dot{\mathbf{w}}=\mathbf{A w}$ and $\dot{\mathbf{z}}=\mathbf{B z}$:

Decide whether it is globally asymptotically stable or unstable - and if unstable, whether the origin is a saddle point or not.
(b) The system (S) has precisely two equilibrium points, both on the x axis. Find and classify these. (Hint: The linear systems from part (a) will show up.)
(c) Sketch a phase plane for the system (S) and indicate some particular solution curves. (Hint: The diagram on the last page gives a hint.)

Problem 2 Suggested weight: 15%. Consider the problem

$$
J_{t}\left(x_{t}\right)=\max \left\{\ln x_{T}+\sum_{s=t}^{T-1}\left(\ln x_{s}+\left(1-u_{s}\right) \sqrt{x_{s}}\right)\right\} \quad \text { where } x_{t+1}=x_{t} u_{t}, \quad u_{t}>0
$$

- Use dynamic programming to calculate $J_{T-1}(x)$ and $J_{T-2}(x)$.

You can express $J_{T-2}(x)$ in terms of the function $w(x)$ satisfying $w=1 / \sqrt{u_{T-2}^{*}}$, as long as you obtain a formula for w.

Problem 3 Suggested weight: 20%. Let x_{0}, T and k be constants, all >0, and let m be a real constant. Consider the following optimal control problem:

$$
\max _{u(t) \geq m} \int_{0}^{T}\left([x(t)]^{2}-u(t) \cdot[x(t)]^{k+1}\right) d t \quad \text { where } \dot{x}(t)=u(t) x(t) \text { and } x(0)=x_{0}
$$

Terminal state $x(T)$ is free, but note that $x(T)>0$ because $x(t) \geq x_{0} e^{m t}$ for all $t>0$.
(a) - State the conditions from the maximum principle, and

- show that these conditions imply that $u(T)=m$, i.e. the left endpoint of U.
(b) Let now $m=0$, so the control region is $[0, \infty)$.

Show that if $T<\frac{1}{2} x_{0}^{k-1}$, the control $u \equiv 0$ - i.e., so that $(x(t), u(t))=\left(x_{0}, 0\right)$ for all t - satisfies all the conditions from the maximum principle.

Problem 4 Suggested weight: 40%. Define the matrices M and H and the vectors \mathbf{h}_{i} as follows; observe that the \mathbf{h}_{i} are the columns of \mathbf{H} :

$$
\mathbf{M}=\left(\begin{array}{ccc}
2 & -12 & 3 \\
2 & -9 & 2 \\
6 & -24 & 5
\end{array}\right), \quad \mathbf{H}=\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 4 \\
-1 & 4 & 17
\end{array}\right), \quad \mathbf{h}_{1}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right), \quad \mathbf{h}_{2}=\left(\begin{array}{l}
0 \\
1 \\
4
\end{array}\right), \quad \mathbf{h}_{3}=\left(\begin{array}{c}
-1 \\
4 \\
17
\end{array}\right)
$$

(a) - Show that $\left\{\mathbf{h}_{1}, \mathbf{h}_{2}, \mathbf{h}_{3}\right\}$ form a linearly dependent set, and find the rank of the matrix \mathbf{H}.

- Show that each \mathbf{h}_{i} is an eigenvector of \mathbf{M}, with the same eigenvalue λ.
(b) In the first bullet item, you shall find an eigenvalue $\mu \neq \lambda$, but for full score you shall be able to do so without calculating the characteristic polynomial:
- Find μ using the following fact (which you need not show): the rank of \mathbf{M} is two. Half score on this bullet item may be obtained by instead finding μ by calculating (or starting to calculate) the characteristic polynomial.
- Find an eigenvector \mathbf{v} associated with μ.
(c) The functions $Q(\mathbf{x})=\mathbf{x}^{\prime} \mathbf{H} \mathbf{x}$ and $R(\mathbf{x})=\mathbf{x}^{\prime} \mathbf{M} \mathbf{x}$ are quadratic forms. For each of these, decide whether it is indefinite or positive/negative definite/semidefinite.
(d) Let \mathbf{x}_{0} be a given vector, and define for each nonnegative integer t

$$
\mathbf{x}_{t+1}=\mathbf{M} \mathbf{x}_{t}+\pi \mathbf{h}_{1}+\mathbf{v} \quad(\text { where } \pi=3.14159 \ldots)
$$

You can take for granted that each \mathbf{x}_{t} can be written as $\mathbf{x}_{t}=a_{t} \mathbf{h}_{1}+b_{t} \mathbf{h}_{2}+c_{t} \mathbf{v}$ where $\mathbf{h}_{1}, \mathbf{h}_{2}$ and \mathbf{v} are the above eigenvectors of \mathbf{M}.

- Use induction to establish a linear first-order difference equation $a_{t+1}=k a_{t}+d$ for the a_{t} coefficients, and find the constants k and d.
(Hint: The "base case" says that a_{0} exists, which you can take for granted is true.)

Appendix: hint for problem 1 part (c):

