UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Exam: ECON4140 – Mathematics 3: Differential Equations, Static and Dynamic Optimization

Date of exam: Wednesday, May 24, 2017 Grades are given: June 14, 2017

Time for exam: 2.30 p.m. - 5.30 p.m.

The problem set covers 4 pages (incl. cover sheet)

Resources allowed:

• Open book exam. All written and printed resources – as well as calculator - is allowed

The grades given: A-F, with A as the best and E as the weakest passing grade. F is fail.

ECON4140 Mathematics 3

May 24th 2017, 1430-1730.

There are 3 pages of problems to be solved (including a figure on the last page).

All printed and written material may be used, as well as pocket calculators.

Grades given run from A (best) to E for passes, and F for fail.

- You are required to state reasons for all your answers.
- You are permitted to use any information stated in an earlier letter-enumerated item (e.g. "(a)") to solve a later one (e.g. "(c)"), regardless of whether you managed to answer the former. A later item does not necessarily require answers from or information given in a previous one.
- "Suggested" weights: the grading committee is free to deviate.

Problem 1 Suggested weight: 25 %. In this problem, let $\mathbf{A} = \begin{pmatrix} 4 & 1 \\ 2 & -3 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} -4 & 1 \\ 2 & -3 \end{pmatrix}$ and let (S) be the nonlinear differential equation system

$$\dot{x} = y + x^4 - 1$$

$$\dot{y} = x^3 - x - 3y$$
(S)

- (a) Consider in this part each of the differential equation systems $\dot{\mathbf{w}} = \mathbf{A}\mathbf{w}$ and $\dot{\mathbf{z}} = \mathbf{B}\mathbf{z}$:

 Decide whether it is globally asymptotically stable or unstable and if unstable, whether the origin is a saddle point or not.
- (b) The system (S) has precisely two equilibrium points, both on the x axis. Find and classify these. (*Hint:* The linear systems from part (a) will show up.)
- (c) Sketch a phase plane for the system (S) and indicate some particular solution curves. (*Hint:* The diagram on the last page gives a hint.)

Problem 2 Suggested weight: 15 %. Consider the problem

$$J_t(x_t) = \max \left\{ \ln x_T + \sum_{s=t}^{T-1} \left(\ln x_s + (1 - u_s) \sqrt{x_s} \right) \right\}$$
 where $x_{t+1} = x_t u_t$, $u_t > 0$.

• Use dynamic programming to calculate $J_{T-1}(x)$ and $J_{T-2}(x)$.

You can express $J_{T-2}(x)$ in terms of the function w(x) satisfying $w = 1/\sqrt{u_{T-2}^*}$, as long as you obtain a formula for w.

Problem 3 Suggested weight: 20 %. Let x_0 , T and k be constants, all > 0, and let m be a real constant. Consider the following optimal control problem:

$$\max_{u(t) \ge m} \int_0^T \left([x(t)]^2 - u(t) \cdot [x(t)]^{k+1} \right) dt \quad \text{where } \dot{x}(t) = u(t)x(t) \text{ and } x(0) = x_0.$$

Terminal state x(T) is free, but note that x(T) > 0 because $x(t) \ge x_0 e^{mt}$ for all t > 0.

- (a) State the conditions from the maximum principle, and
 - show that these conditions imply that u(T) = m, i.e. the left endpoint of U.
- (b) Let now m = 0, so the control region is $[0, \infty)$. Show that if $T < \frac{1}{2}x_0^{k-1}$, the control $u \equiv 0$ – i.e., so that $(x(t), u(t)) = (x_0, 0)$ for all t – satisfies all the conditions from the maximum principle.

Problem 4 Suggested weight: 40 %. Define the matrices **M** and **H** and the vectors \mathbf{h}_i as follows; observe that the \mathbf{h}_i are the columns of **H**:

$$\mathbf{M} = \begin{pmatrix} 2 & -12 & 3 \\ 2 & -9 & 2 \\ 6 & -24 & 5 \end{pmatrix}, \quad \mathbf{H} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 4 \\ -1 & 4 & 17 \end{pmatrix}, \quad \mathbf{h}_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \quad \mathbf{h}_2 = \begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix}, \quad \mathbf{h}_3 = \begin{pmatrix} -1 \\ 4 \\ 17 \end{pmatrix}$$

- (a) Show that $\{\mathbf{h}_1, \mathbf{h}_2, \mathbf{h}_3\}$ form a linearly dependent set, and find the rank of the matrix \mathbf{H} .
 - Show that each \mathbf{h}_i is an eigenvector of \mathbf{M} , with the same eigenvalue λ .
- (b) In the first bullet item, you shall find an eigenvalue $\mu \neq \lambda$, but for full score you shall be able to do so without calculating the characteristic polynomial:
 - Find μ using the following fact (which you need not show): the rank of **M** is two. Half score on this bullet item may be obtained by instead finding μ by calculating (or starting to calculate) the characteristic polynomial.
 - Find an eigenvector \mathbf{v} associated with μ .
- (c) The functions $Q(\mathbf{x}) = \mathbf{x}'\mathbf{H}\mathbf{x}$ and $R(\mathbf{x}) = \mathbf{x}'\mathbf{M}\mathbf{x}$ are quadratic forms. For each of these, decide whether it is indefinite or positive/negative definite/semidefinite.
- (d) Let \mathbf{x}_0 be a given vector, and define for each nonnegative integer t

$$\mathbf{x}_{t+1} = \mathbf{M}\mathbf{x}_t + \pi \mathbf{h}_1 + \mathbf{v}$$
 (where $\pi = 3.14159...$)

You can take for granted that each \mathbf{x}_t can be written as $\mathbf{x}_t = a_t \mathbf{h}_1 + b_t \mathbf{h}_2 + c_t \mathbf{v}$ where \mathbf{h}_1 , \mathbf{h}_2 and \mathbf{v} are the above eigenvectors of \mathbf{M} .

• Use induction to establish a linear first-order difference equation $a_{t+1} = ka_t + d$ for the a_t coefficients, and find the constants k and d. (Hint: The "base case" says that a_0 exists, which you can take for granted is true.)

Appendix: hint for problem 1 part (c):

