UNIVERSITY OF OSLO
 DEPARTMENT OF ECONOMICS

Exam: ECON4140 - Mathematics 3: Differential Equations, Static and Dynamic

 OptimizationDate of exam: Friday, June 1, $2018 \quad$ Grades are given: June 19, 2018
Time for exam: 14.30 - 17.30
The problem set covers 3 pages (incl. cover sheet)
Resources allowed:

- Open book exam, where all written and printed resources is allowed. In addition two alternative calculators are allowed for examination:
- Aurora HC106
- Casio FX-85EX

The grades given: A-F, with A as the best and E as the weakest passing grade. F is fail.

ECON4140 Mathematics 3

June 1st 2018, 1430-1730.
There are 2 pages of problems to be solved.
All printed and written material may be used, as well as both the approved calculators.
Grades given run from A (best) to E for passes, and F for fail.

- You are required to state reasons for all your answers.
- You are permitted to use any information stated in an earlier letter-enumerated item (e.g. "(a)") to solve a later one (e.g. "(c)"), regardless of whether you managed to answer the former. A later item does not necessarily require answers from or information given in a previous one.

Problem 1 Let $\mathbf{A}_{c}=\left(\begin{array}{lll}0 & 0 & 9 \\ 0 & c & 0 \\ 5 & 0 & 4\end{array}\right)$ for each real constant c.
(a) Decide the rank of \mathbf{A}_{c} and the definiteness of the quadratic form $Q(\mathbf{x})=\mathbf{x}^{\prime} \mathbf{A}_{c} \mathbf{x}$.
(b) $\mathbf{v}=(9,0,-5)^{\prime}$ is an eigenvector. Find the associated eigenvalue $\nu<0$.
(c) Calculate the characteristic polynomial $p(\lambda)$ and show that $p(c)=0$.
(d) Find an eigenvalue $\mu>\nu$ such that μ does not depend on c, and an associated eigenvector \mathbf{u}.

Problem 2 Consider the difference equation $\quad x_{t+2}-x_{t+1}+x_{t}=\kappa 2^{t}$.
(a) In this part, let $\kappa=0$. Find the particular solution that satisfies $x_{0}=0$ and $x_{1}=1$.
(b) In this part, let $\kappa=1$. Find the general solution.
(c) Let $a_{n}=\frac{1}{n!\cdot(n+2)}$. Prove by induction that $a_{1}+\ldots+a_{n}=\frac{1}{2}-\frac{1}{(n+2)!}$.

Problem 3 Let $a \geq b$ be constants, either both >1 or both $\in(-1,1)$ (i.e., either $a \geq b>1$ or $1>a \geq b>-1)$. Consider the differential equation system

$$
\begin{align*}
\dot{x} & =(1-a y-x) \cdot x \\
\dot{y} & =(1-b x-y) \cdot y \tag{S}
\end{align*}
$$

(a) - Find all four stationary states (equilibrium points).

- Classify that stationary state (\bar{x}, \bar{y}) for which both $\bar{x}>0$ and $\bar{y}>0$. (Such a point does exists under the assumptions on the constants. Your answer might depend on a and b.)
(b) Let $a=b=\frac{1}{2}$. Sketch a phase diagram covering the set where $0 \leq x \leq 2,0 \leq y \leq 2$, and indicate some solution curves.

Problem 4 Consider for constants $x_{0}>0$ and $T>0$ the optimal control problem

$$
\max _{u(t) \in[0,1]} \int_{0}^{T}\left(u-x^{2}\right) d t \quad \text { where } \dot{x}=x+u, \quad x(0)=x_{0} \quad \text { and } x(T) \text { free. }
$$

(a) State the conditions from the maximum principle. Are these conditions also sufficient?
(b) Show that an optimal control u^{*} must be 0 or 1 somewhere in the open interval $(0, T)$. (I.e., that it cannot be optimal to choose a u s.t. $u(t) \in(0,1)$ for all $t \in(0, T)$.)

Problem 5 Define the functions u and v on the (convex!) set $\{(x, y) ; x \geq 0, y \geq 0\}$ by

$$
u(x, y)=(16 x y)^{3} \quad \text { and } \quad v(x, y)=x+\sqrt{x^{2}+2 y}
$$

(a) Decide quasiconcavity/quasiconvexity of each of the functions u and v.

Hints: (I) "neither" is wrong answer! (II) solve level curves $v(x, y)=C$ for y.
Consider now the necessary Kuhn-Tucker conditions - disregarding constraint qualifications, which you can take for granted that hold - associated to each of the problems

$$
\begin{array}{cccc}
\max u(x, y) & \text { such that } & v(x, y)=1, \quad x \geq 0, \quad y \geq 0 \\
\max (-v(x, y)) & \text { such that } & u(x, y) \geq 1, \quad x \geq 0, \quad y \geq 0 \tag{P2}
\end{array}
$$

It is a fact that $\left(x_{1}, y_{1}\right)=\left(\frac{1}{2}, 0\right)$ satisfies the necessary conditions associated to (P1), and that $\left(x_{2}, y_{2}\right)=\left(\frac{1}{4}, \frac{1}{4}\right)$ satisfies the necessary conditions associated to (P2).
(b) For each problem (P1), resp. (P2), and the corresponding point (x_{1}, y_{1}), resp. (x_{2}, y_{2}): Does the point $\left(x_{1}, y_{1}\right)$ resp. $\left(x_{2}, y_{2}\right)$ also satisfy sufficient Kuhn-Tucker conditions? If not: which part of the conditions fails?
Hint: The Lagrangians are not concave.

