UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Exam: ECON4140 – Mathematics 3: Differential Equations, Static and Dynamic Optimization

Date of exam: Monday, May 20, 2019 Grades are given: June 7, 2019

Time for exam: 09.00 a.m. – 12.00 noon

The problem set covers 3 pages (incl. cover sheet)

Resources allowed:

• Open book exam. All written and printed resources – in addition to one out of two different calculators is allowed.

The grades given: A-F, with A as the best and E as the weakest passing grade. F is fail.

ECON4140 Mathematics 3

May 20th 2019, 0900-1200.

There are 2 pages of problems to be solved.

All printed and written material may be used, as well as both the approved calculators.

Grades given run from A (best) to E for passes, and F for fail.

- You are required to state reasons for all your answers.
- You are permitted to use any information stated in an earlier letter-enumerated item (e.g. "(a)") to solve a later one (e.g. "(c)"), regardless of whether you managed to answer the former. A later item does not necessarily require answers from or information given in a previous one.
- Weighting: At the grading committee's discretion. The problem set is intended to facilitate equal weight over letter-enumerated items (Problem 4 counting as one).

Problem 1 Note, this problem involves more than one topic. Parts (c) and (d) require you to use *only* the information given in (a) and (b), but you can solve part (e) by use of any means you wish.

Throughout the problem, let $\mathbf{M} = \begin{pmatrix} 7 & 2 \\ 16 & 3 \end{pmatrix}$.

- (a) $\mathbf{w} = (1 \ 2)'$ is an eigenvector of \mathbf{M} . Find the corresponding eigenvalue $\mu > 0$.
- (b) Find an eigenvalue $\lambda < 0$ and a corresponding eigenvector \mathbf{v} .
- (c) What can parts (a) and (b) tell us about the definiteness of the quadratic form $q(x,y) = (x, y)\mathbf{M}\binom{x}{y}$? If applicable: what information/property would be missing? (*Hint/warning:* mind the details. You are required to use only parts (a) and (b).)
- (d) What can parts (a) and (b) tell us about the stability property of the differential equation system $\dot{\mathbf{z}} = \mathbf{Mz}$? If unstable, can (a) and (b) tell whether any non-constant particular solution converges? (Again, you are required to use only parts (a) and (b).)
- (e) Let $\mathbf{w} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ as in part (a) and h be a given continuously differentiable function. Consider the differential equation system $\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \mathbf{M} \begin{pmatrix} x \\ y \end{pmatrix} + h(t)\mathbf{w}$.
 - Deduce a second-order differential equation for x (for general h), and
 - find a particular solution of that equation if $h(t) = e^{\pi t}$, and
 - explain how to find a particular solution if instead $h(t) = t^{2019}$.

Problem 2 Consider the dynamic programming problem

$$J_{t_0}(x) = \max_{u_t > 0} \left\{ x_T + \ln x_T + \sum_{t = t_0}^{T-1} (u_t + \ln u_t) \right\}, \qquad x_{t+1} = x_t - u_t \qquad \text{starting at } x_{t_0} = x > 0.$$

It is possible to start at part (b) and deduce (a) afterwards.

- (a) Calculate J_{T-1} and J_{T-2} .
- (b) Use induction to show that for each $s=0,1,\ldots$, we have $J_{T-s}(x)=x+C_{T-s}\cdot \ln\frac{x}{C_{T-s}}$ with $C_{T-s}>0$ not depending on x.
- (c) Consider the problem obtained in the limit $T \to +\infty$:
 - State the associated Bellman equation.
 - Why can we *not* expect the Bellman equation to have a (finite) solution J(x)? (*Hint*: Look at the limit of C_{T-s} .)

Problem 3 Let T, r and x_0 be constants, all > 0. Consider the variational problem

$$\min \int_0^T e^{-rt} \left(x(t)^3 \cdot \dot{x}(t) \right)^2 dt, \qquad x(0) = x_0, \quad x(T) = 2.$$

- (a) State the associated Euler equation.
 - State the conditions from the maximum principle, obtained by rewriting as an optimal control problem (maximization!) with control $u = \dot{x} \in (-\infty, +\infty)$.

Let from now on $x_0 = T = 1$ and $r = \ln 2$. Take for granted that this $x^*(t)$ is optimal:

$$x^*(t) = \sqrt{3 \cdot 2^t - 2}$$
 so that $\dot{x}^*(t) = \frac{3\ln 2}{2} \cdot \frac{2^t}{x^*(t)}$ (*)

Hint: It is possible to answer the following part (b) without solving any differential equation, if you use formulae (*). You are not asked to show or verify (*).

- (b) Calculate p(1), where p is the adjoint variable from the maximum principle. (You are allowed to calculate the current-value adjoint $\lambda(1)$ instead.)
 - Find an expression for how much, approximately, the *optimal value* changes if T increases from 1 to 1+1/144. (If you did not manage to solve the previous bullet item, use the number e in place of p(1) or of $\lambda(1)$.)

Problem 4 Let ϕ be the strictly increasing function $\phi(t) = t^{1/3} + e^{t/3}$, all $t \in \mathbb{R}$. Decide the quasiconcavity/quasiconvexity(/both/neither) of the three functions

$$f(z) = \phi(z+1) + \phi(z-1),$$
 $g(x,y) = \phi(y-x \cdot (1-x))$ and $h(x,y) = \phi(x^{3/2}y^e),$

f and g defined everywhere and h for $x \ge 0$, $y \ge 0$ (all domains convex).