ECON4140 Mathematics 3 exam 2020-05-29

- You are required to state reasons for all your answers.

For the 2020 exam in particular:

- Except where otherwise stated, all answers must be justified with calculations as if the exam were a school exam with textbook only;
- As long as you are invoking theory known from the syllabus, you can reference it as it would have been expected in a school exam; and, where are asked to state particular instances of conditions or other theory, no citation is needed. This item relaxes the rules for referencing and citations; note however that quoting from a source is subject to normal citation practice (with quotations marks and references to the source).
You are not expected to create any bibliography.
- You are permitted to use any information stated in an earlier letter-enumerated item (e.g. "(a)") to solve a later one (e.g. "(c)"), regardless of whether you managed to answer the former. A later item does not necessarily require answers from or information given in a previous one.
- "Suggested" weights: the grading committee is free to deviate. In particular, the committee might want to consider problems 2 and 3 together.

Problem 1 of 5. Suggested weight: 1/4 For each real q, define the matrices
$\mathbf{A}_{q}=\left(\begin{array}{lll}q & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & q\end{array}\right)$ and $\mathbf{B}_{q}=\left(\begin{array}{cc}q & q^{2} \\ q^{3} & q^{4} \\ q^{5} & q^{6}\end{array}\right)$ and $\mathbf{C}_{q}=\left(\mathbf{A}_{q} \vdots \mathbf{B}_{q}\right)=\left(\begin{array}{ccccc}q & 1 & 1 & q & q^{2} \\ 1 & 1 & 1 & q^{3} & q^{4} \\ 1 & 1 & q & q^{5} & q^{6}\end{array}\right)$.
(a) For each real q, decide (i) the rank of \mathbf{A}_{q}, (ii) the rank of \mathbf{C}_{q} (hint: do \mathbf{A}_{q} first), and (iii) whether the the equation system $\mathbf{A}_{q} \mathbf{X}=\mathbf{B}_{q}$ has a solution. (You are not asked for uniqueness nor to solve.)
(b) (i) Show that \mathbf{A}_{q} is never negative semidefinite, and decide when it is indefinite.
(ii) Complete the statement: «From item (i) and the fact that not all eigenvalues of \mathbf{A}_{q} are equal, it follows (for any q) that at least one eigenvalue is \qquad].»
(c) Which of the vectors $(1,0,-1)^{\prime},(-1,0,1)^{\prime},(q, 0, q)^{\prime}$, is/are eigenvectors of \mathbf{A}_{q} ? The answer could (but does not necessarily) depend on q.
(d) Let $q=-1 . \lambda=2$ is an eigenvalue for \mathbf{A}_{-1}. Find an associated eigenvector \mathbf{v}.

Problem 2 of 5. Suggested weight: $1 / 8$ Consider the dynamic programming problem $J_{t_{0}}\left(x_{t_{0}}\right)=\max _{u_{t} \in(-\infty,+\infty)}\left\{-x_{T}^{2}+\sum_{t=t_{0}}^{T-1}\left(x_{t}-u_{t}^{2}\right)\right\}$ subject to $x_{t+1}=x_{t}+u_{t}+w_{t+1}$, where $w_{1}, w_{2}, \ldots, w_{T}$ are given numbers.

- Show by induction that J_{T-s} has the form

$$
J_{T-s}(x)=-\frac{1}{M_{s}} x^{2}+2 B_{s} x+C_{s} \quad \text { with } M_{s}>0
$$

and where neither M_{s}, B_{s} nor C_{s} depend on x. (You are not asked to calculate these coefficients, but M_{s} will satisfy a fairly simple linear difference equation.)

If unable to do so, you can achieve partial score by instead calculating J_{T-1} and u_{T-2}^{*} for some special cases for the w 's, e.g. $w_{T-1}=w_{T}=0$. You will not get additional score for this if your answer to the above problem is at " B " level.

Problem 3 of 5. Suggested weight: 1/4

(a) Pick one of the following three bullet items and answer it. If you submit answers to more, your best will count and the others be discarded.

- Find the general solution of $\ddot{w}=q \cdot(2 \dot{w}-w+t)$ for $q=0, q=1 / 2$ and $q=1$.
- Suppose that the differential equation system $\dot{\mathbf{z}}=\left(\begin{array}{cc}0 & b \\ c & 0\end{array}\right) \mathbf{z}$ (in the plane) has only one stationary state, namely $\mathbf{0}$; and, that the origin is not a saddle point. Find the first coordinate z_{1} of the general solution in terms of functions of a real variable.
- Find the general solution of the differential equation system for \mathbf{z}, under the same assumptions - also in terms of functions of a real variable.
(b) The nonlinear differential equation system

$$
\begin{equation*}
\dot{x}(t)=x \cdot(2-x)-\max \left\{\frac{1}{y}-R, 0\right\}, \quad \dot{y}(t)=2(x-1) \cdot y \tag{S}
\end{equation*}
$$

has a stationary state ($\tilde{x}, \tilde{y})$ with $\tilde{x}=1$ and $\tilde{y}>0$. Show that (\tilde{x}, \tilde{y}) is a saddle point.
(c) Consider again system (S). In this question you shall find where in the phase plane there is vertical-only / horizontal-only motion.
(i) Deduce formulae for the nullclines (a.k.a. "null isoclines") for the differential equation system; this deduction must be clear enough in absence of any plots;
(ii) Point out where any nullcline has a component that is a line segment. You can choose whether to indicate that in the formulae in (i) or in the sketch in (iii).
(iii) Indicate in a sketch where there is vertical resp. horizontal motion.

Possible hints for (iii) can be found in the below plots, but beware that none are complete and all have inaccuracies. Nevertheless one is accurate enough for (iii), once you add a missing element and then make those indications what (iii) asks for.

Page 3 of 5 pages/problems (one per file)

Problem 4 of 5. Suggested weight: 1/4 Consider the optimal control problem

$$
\max _{u(t) \geq 0} \int_{0}^{T} \ln (R+u) d t \quad \text { subject to } \quad \dot{x}=x \cdot(2-x)-u, \quad x(0)=x_{0}, \quad x(T) \geq 0
$$

where the constants R, T and x_{0} are all >0. The problem is non-degenerate: you can disregard any possibility of the $<p_{0} \gg$ constant being zero.
(a) (i) State the necessary conditions from the maximum principle.
(ii) Are these conditions also sufficient for this particular problem?

If not: is there any additional condition that would enable us to conclude that an admissible pair satisfying the necessary conditions from (i), will indeed solve the problem?
(b) Let $y(t)=p(t)$, the adjoint (costate) from the maximum principle. Show that the conditions from the maximum principle implies the differential equation system

$$
\dot{x}(t)=x \cdot(2-x)-\max \left\{\frac{1}{y}-R, 0\right\}, \quad \dot{y}(t)=2(x-1) \cdot y
$$

which is system (S) from Problem 3.
For part (c), use the fact (cf. Problem 3(b)) that system (S) has a saddle point $(\tilde{x}, \tilde{y})=(1, \tilde{y})$ with $\tilde{y}>0$. Call the value of the optimal control problem $V\left(x_{0}\right)$, and consider the derivative V^{\prime} at $x_{0}=\tilde{x}=1$ (taking for granted that $V^{\prime}(1)$ exists).
(c) Show that we will always have $V^{\prime}(1) \in[0,1]$ no matter what $R>0$ and $T>0$, and decide whether the following statement is true or false: «when we vary $R>0$ and $T>0$, we can make $V^{\prime}(1)$ attain any value in $(0,1)$.»
(If you prefer the problem formulation «decide what values $V^{\prime}(1)$ can attain and not, when $T>0$ and $R>0$ vary», then that is what is asked for - except you are not required to take a stand on whether 0 or 1 can be attained.)
In case you need the figures following Problem 3, they are repeated below:

Page 4 of 5 pages/problems (one per file)

Problem 5 of 5. Suggested weight: $\mathbf{1} / 8$ Let $\alpha<\beta$ be constants, $0<\alpha<\beta<1$. Define $f(x, y, z)=\left(\beta x^{\alpha} y^{\beta-\alpha}+\min \left\{\alpha y^{\beta}, z^{\beta}\right\}\right)^{1 / \beta}$ whenever $x>0, y>0$ and $z>0$.
(a) Show that f is quasiconcave.
(Hint: The problem can be solved without trying to calculate partial derivatives of f, and you might take note that f is not even C^{1}.)
(b) Is there any quick way to decide whether f is concave?

```
<-- end of problem set -->
```

