ECON4140 Mathematics 3 exam 2020-06-23

- You are required to state reasons for all your answers.

For the 2020 exam in particular:

- Except where otherwise stated, all answers must be justified with calculations as if the exam were a school exam with textbook only;
- As long as you are invoking theory known from the syllabus, you can reference it as it would have been expected in a school exam; and, where are asked to state particular instances of conditions or other theory, no citation is needed. This item relaxes the rules for referencing and citations; note however that quoting from a source is subject to normal citation practice (with quotations marks and references to the source).
You are not expected to create any bibliography.
- You are permitted to use any information stated in an earlier letter-enumerated item (e.g. "(a)") to solve a later one (e.g. "(c)"), regardless of whether you managed to answer the former. A later item does not necessarily require answers from or information given in a previous one.
- "Suggested" weights: at the grading committee's discretion. The problem set was intended to facilitate weighting uniform over letter-enumerated parts.
* Note: Problems 1-5 are of uneven length/workload with 5 having four letter parts, ending in a possibly difficult question.

Problem 1 of 5. Consider the following differential equation and difference equation:

$$
\begin{align*}
\ddot{x} & =\frac{1}{2} \dot{x}-\frac{1}{8} x+f(t) \tag{D}\\
x_{t+2} & =\frac{1}{2} x_{t+1}-\frac{1}{8} x_{t}+g_{t} \tag{E}
\end{align*}
$$

(a) Find the general solutions of (D) and (E) when $f(t)=2020=g_{t}$ (constants).
(b) Explain how you would go forth to solve (D) when $f(t)=2020+t^{2020}+2020 \sin (2020 t)$.
(c) - Is (D) stable? Is (E) stable?

- Do we have tools to decide stability of (D) and/or (E) without solving?

Problem 2 of 5. Consider the differential equation system

$$
\begin{align*}
& \dot{x}=y-\cos \frac{\pi x}{3}-\frac{1}{2} \tag{S}\\
& \dot{y}=|x|-y
\end{align*}
$$

(a) The system has an equilibrium point (a.k.a. «stationary state») at $(x, y)=(1,1)$. Show that it is a saddle point.
(b) The system has one more equilibrium point (\tilde{x}, \tilde{y}). Find and classify it:

- Decide if it is stable or not;
- Decide if it is oscillating or not;
- If unstable, decide if it is a saddle point.
(c) There is a non-constant particular solution $(x(t), y(t))$ which converges to $(1,1)$ as $t \rightarrow+\infty$. Find $\lim _{t \rightarrow+\infty} \frac{y(t)-1}{x(t)-1}$ for this solution path.

Problem 3 of 5. Consider the variational problem(s)

$$
\max / \min \int_{0}^{T} e^{-r t} \ln (G(x(t), \dot{x}(t))) d t \quad \text { subject to } \quad x(0)=x_{0}, \quad x(T)=0
$$

where all constants are >0. This problem concerns the function

$$
G(x, y)=R+(2-x) \cdot x-y, \quad R>0 \text { constant }
$$

but for part (a) it is probably a good idea - and it is worth partial score by itself - to first use a general G (but insert for $\partial G / \partial y=-1$).
(a) Write out the associated Euler equation.
(b) Suppose we have found an $x=x(t)$ that satisfies the Euler equation with $x(0)=x_{0}$ and $x(T)=0$. Can we then conclude that this solves the maximization problem? The minimization problem? Neither?

Problem 4 of 5. Let $\beta \in(0,1)$ be a constant. Consider the dynamic programming problem

$$
J_{t}\left(x_{t}\right)=\max _{u_{t} \in U} \sum_{s=t}^{T} \beta^{s-t}\left(x_{t}-\beta u_{t}^{2}\right) \quad \text { subject to } \quad x_{t+1}=\beta x_{t}+\left(1-u_{t}\right) \cdot u_{t}
$$

You can choose - once for the entire Problem 4 - whether to use $U=(-\infty,+\infty)$ or $[0, \infty)$ or $[0,1]$. Your choice might affect what arguments you need to complete part (a).

In the following, neither A_{τ} nor B_{τ} (nor a_{τ} nor b_{τ}) can depend on x, only on time τ remaining to the end of the planning horizon.
(a) Show by induction that the value $J_{T-\tau}(x)$ takes the form $A_{\tau} x+B_{\tau}$, and find a difference equation for A_{τ}.
If you prefer not to use the β^{s-t} formulation, you can equivalently show that the function $M_{t}=\beta^{t} J_{t}\left(x_{t}\right)=\max _{u_{t} \geq 0} \sum_{s=t}^{T} \beta^{s}\left(x_{t}-\beta u_{t}^{2}\right)$, takes the form $M_{T-\tau}=a_{\tau} x+b_{\tau}$; then find difference equations for a_{τ} and b_{τ}.
(b) Put $t=0$. Let $T \rightarrow+\infty$ to get an infinite-horizon problem.

- State the associated Bellman equation for the value function $J(x)$.
(In this problem you must use J.)
- Show that if $J(x)=A x+B$ satisfies the Bellman equation (with A and B constants) then $A=1 /\left(1-\beta^{2}\right)$.
(You are not asked to show that such a function actually solves the infinite horizon problem.)

Problem 5 of 5. Let $n \geq 2$ be a natural number and s be a real constant. Define \mathbf{J}_{n} to be the $n \times n$ matrix where element (k, ℓ) is 1 if $k+\ell=n+1$, and 0 otherwise ${ }^{1}$. Note that \mathbf{J}_{3} has a «middle element» number (2,2), while \mathbf{J}_{4} has no single middle element.

Let the matrix $\mathbf{A}=\mathbf{A}_{n, s}$ be defined as $\mathbf{I}_{n}+s \mathbf{J}_{n}$, where \mathbf{I}_{n} is the $n \times n$ identity matrix.
(a) Let $\mathbf{a}=(1,0, \ldots, 0)^{\prime}$ and $\mathbf{b}=(0, \ldots, 0,1)^{\prime}$ have only a single nonzero element. Let $\mathbf{u}=\mathbf{a}+\mathbf{b}$ and $\mathbf{v}=\mathbf{a}-\mathbf{b}$.
For each n and each s : Check whether the vectors \mathbf{u} and/or \mathbf{v} is/are eigenvector for \mathbf{J}_{n} and/or $\mathbf{A}_{n, s}$.
(b) In this part let $n=3$ and $s \neq 0$.

- Calculate the characteristic polynomial of \mathbf{A}.
- Find - or disprove the existence of - an eigenvector \mathbf{w} which is not a linear combination of \mathbf{a} and \mathbf{b}.
(c) Suppose that the rank $\mathbf{A}_{n, 1}$ equals n. Can then s be equal to 1? Your answer might depend on n.
(d) Let \mathbf{Y} and \mathbf{Z} be symmetric $n \times n$ matrices, both of which have 0 as their smallest eigenvalue. Prove the following facts about $\mathbf{M}=\mathbf{Y}+\mathbf{Z}$:
- M has no negative eigenvalues.
- [Might be difficult.] If \mathbf{Y} and \mathbf{Z} have no eigenvector in common, we know that \mathbf{M} has all its eigenvalues positive.

```
<-- end of problem set -->
```

[^0]
[^0]: ${ }^{1}$ Examples: $\mathbf{J}_{2}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \mathbf{J}_{3}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$ while $\mathbf{J}_{4}=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$

