ECON4140 Mathematics 3 exam 2020-06-23

- You are required to state reasons for all your answers. For the 2020 exam in particular:
 - Except where otherwise stated, all answers must be justified with calculations as if the exam were a school exam with textbook only;
 - As long as you are invoking theory known from the syllabus, you can reference it as it would have been expected in a school exam; and, where are asked to state particular instances of conditions or other theory, no citation is needed. This item relaxes the rules for referencing and citations; note however that *quoting from a source* is subject to normal citation practice (with quotations marks and references to the source). You are not expected to create any bibliography.
- You are permitted to use any information stated in an earlier letter-enumerated item (e.g. "(a)") to solve a later one (e.g. "(c)"), regardless of whether you managed to answer the former. A later item does not necessarily require answers from or information given in a previous one.
- "Suggested" weights: at the grading committee's discretion. The problem set was intended to *facilitate* weighting uniform over letter-enumerated parts.
- ★ Note: Problems 1–5 are of uneven length/workload with 5 having four letter parts, ending in a possibly difficult question.

Problem 1 of 5. Consider the following differential equation and difference equation:

$$\ddot{x} = \frac{1}{2}\dot{x} - \frac{1}{8}x + f(t)$$
 (D)

$$x_{t+2} = \frac{1}{2}x_{t+1} - \frac{1}{8}x_t + g_t \tag{E}$$

- (a) Find the general solutions of (D) and (E) when $f(t) = 2020 = g_t$ (constants).
- (b) Explain how you would go forth to solve (D) when $f(t) = 2020 + t^{2020} + 2020 \sin(2020 t)$.
- (c) Is (D) stable? Is (E) stable?
 - Do we have tools to decide stability of (D) and/or (E) without solving?

Problem 2 of 5. Consider the differential equation system

$$\dot{x} = y - \cos\frac{\pi x}{3} - \frac{1}{2}$$

$$\dot{y} = |x| - y$$
(S)

- (a) The system has an equilibrium point (a.k.a. «stationary state») at (x, y) = (1, 1). Show that it is a saddle point.
- (b) The system has one more equilibrium point (\tilde{x}, \tilde{y}) . Find and classify it:
 - Decide if it is stable or not;
 - Decide if it is oscillating or not;
 - If unstable, decide if it is a saddle point.
- (c) There is a non-constant particular solution (x(t), y(t)) which converges to (1, 1) as $t \to +\infty$. Find $\lim_{t \to +\infty} \frac{y(t) 1}{x(t) 1}$ for this solution path.

Problem 3 of 5. Consider the variational problem(s)

$$\max / \min \int_0^T e^{-rt} \ln \left(G(x(t), \dot{x}(t)) \right) dt \quad \text{subject to} \quad x(0) = x_0, \quad x(T) = 0$$

where all constants are > 0. This problem concerns the function

$$G(x, y) = R + (2 - x) \cdot x - y, \qquad R > 0 \text{ constant}$$

but for part (a) it is probably a good idea – and it is worth partial score by itself – to first use a general G (but insert for $\partial G/\partial y = -1$).

- (a) Write out the associated Euler equation.
- (b) Suppose we have found an x = x(t) that satisfies the Euler equation with $x(0) = x_0$ and x(T) = 0. Can we then conclude that this solves the maximization problem? The minimization problem? Neither?

Problem 4 of 5. Let $\beta \in (0,1)$ be a constant. Consider the dynamic programming problem

$$J_t(x_t) = \max_{u_t \in U} \sum_{s=t}^T \beta^{s-t} (x_t - \beta u_t^2) \qquad \text{subject to} \quad x_{t+1} = \beta x_t + (1 - u_t) \cdot u_t$$

You can choose – once for the entire Problem 4 – whether to use $U = (-\infty, +\infty)$ or $[0, \infty)$ or [0, 1]. Your choice might affect what arguments you need to complete part (a).

In the following, neither A_{τ} nor B_{τ} (nor a_{τ} nor b_{τ}) can depend on x, only on time τ remaining to the end of the planning horizon.

(a) Show by induction that the value $J_{T-\tau}(x)$ takes the form $A_{\tau}x + B_{\tau}$, and find a difference equation for A_{τ} .

If you prefer not to use the β^{s-t} formulation, you can equivalently show that the function $M_t = \beta^t J_t(x_t) = \max_{u_t \ge 0} \sum_{s=t}^T \beta^s(x_t - \beta u_t^2)$, takes the form $M_{T-\tau} = a_\tau x + b_\tau$; then find difference equations for a_τ and b_τ .

- (b) Put t = 0. Let $T \to +\infty$ to get an infinite-horizon problem.
 - State the associated Bellman equation for the value function J(x). (In this problem you must use J.)
 - Show that if J(x) = Ax + B satisfies the Bellman equation (with A and B constants) then $A = 1/(1 \beta^2)$.

(You are not asked to show that such a function actually solves the infinite horizon problem.)

Problem 5 of 5. Let $n \ge 2$ be a natural number and s be a real constant. Define \mathbf{J}_n to be the $n \times n$ matrix where element (k, ℓ) is 1 if $k + \ell = n + 1$, and 0 otherwise¹. Note that \mathbf{J}_3 has a «middle element» number (2, 2), while \mathbf{J}_4 has no single middle element.

Let the matrix $\mathbf{A} = \mathbf{A}_{n,s}$ be defined as $\mathbf{I}_n + s\mathbf{J}_n$, where \mathbf{I}_n is the $n \times n$ identity matrix.

(a) Let $\mathbf{a} = (1, 0, \dots, 0)'$ and $\mathbf{b} = (0, \dots, 0, 1)'$ have only a single nonzero element. Let $\mathbf{u} = \mathbf{a} + \mathbf{b}$ and $\mathbf{v} = \mathbf{a} - \mathbf{b}$.

For each n and each s: Check whether the vectors \mathbf{u} and/or \mathbf{v} is/are eigenvector for \mathbf{J}_n and/or $\mathbf{A}_{n,s}$.

- (b) In this part let n = 3 and $s \neq 0$.
 - Calculate the characteristic polynomial of **A**.
 - Find or disprove the existence of an eigenvector \mathbf{w} which is *not* a linear combination of \mathbf{a} and \mathbf{b} .
- (c) Suppose that the rank $\mathbf{A}_{n,1}$ equals n. Can then s be equal to 1? Your answer might depend on n.
- (d) Let **Y** and **Z** be symmetric $n \times n$ matrices, both of which have 0 as their smallest eigenvalue. Prove the following facts about $\mathbf{M} = \mathbf{Y} + \mathbf{Z}$:
 - M has no negative eigenvalues.
 - [Might be difficult.] If **Y** and **Z** have no eigenvector in common, we know that **M** has all its eigenvalues positive.

<-- end of problem set -->

¹Examples: $\mathbf{J}_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \, \mathbf{J}_3 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ while $\mathbf{J}_4 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$