UNIVERSITY OF OSLO
 DEPARTMENT OF ECONOMICS

Exam: ECON4140 - Mathematics 3: Differential Equations, Static and Dynamic Optimization Date of exam: 26 May, 2021 Grades are given: 16 June 2021

Time for exam: $09.00-12.00$
The problem set covers 3 pages (incl. cover sheet)
Resources allowed:

- All written and printed resources - as well as two alternative calculators - are allowed

The grades given: A-F, with A as the best and E as the weakest passing grade. F is fail.

ECON4140 Mathematics 3: exam 2020-05-26, 09:00-12:00

There are 2 pages of problems to be solved.
All printed and written material may be used, as well as both the approved calculators.
Grades given run from A (best) to E for passes, and F for fail.

- You are required to state reasons for all your answers.
- You are permitted to use any information stated in an earlier letter-enumerated item (e.g. "(a)") to solve a later one (e.g. "(c)"), regardless of whether you managed to answer the former. A later item does not necessarily require answers from or information given in a previous one.

Problem 1 Suggested weight: 30%.

Let q be an arbitrary real constant. For each such q, let $\mathbf{A}=\left(\begin{array}{ccc}2 & 1 & 0 \\ 4 & -1 & 0 \\ 0 & 0 & e^{q}\end{array}\right)$.
(a) Decide whether claim $« \mathbf{u}=(0,0, q)^{\prime}$ is an eigenvector of $\mathbf{A} »$ is:Always true? (I.e. true for all real q.)Always false? (I.e. false for all real q.)True for at least one q and false for at least one q ?
(b) $\lambda=-2$ is an eigenvalue for \mathbf{A}. Calculate an associated eigenvector \mathbf{v}.
(c) In this question you shall find the last eigenvalue of \mathbf{A} : an eigenvalue γ that does not depend on q and does not equal λ :

- For full score: calculate γ without calculating any determinant.
- For score up to a «C»: calculate γ by means of the characteristic polynomial.
(d) $(0,0)$ is an equilibrium point (a stationary state) for the differential equation system

$$
\begin{aligned}
& \dot{x}=2 x+y \\
& \dot{y}=4 \sin x-y
\end{aligned}
$$

There are indeed non-constant solution paths $(x(t), y(t))$ that converge to $(0,0)$ as $t \rightarrow+\infty$. Find $\lim _{t \rightarrow+\infty} \frac{y(t)}{x(t)}$ for such a path.
(Hint: the solution is connected to either (a) or (b) or (c) above.)

Problem 2 Suggested weight: 20%.

(a) Find the general solution of the difference equation $x_{t+2}-2 x_{t+1}+\frac{5}{4} x_{t}=20$.
(b) Find the general solution of the differential equation $\ddot{x}-2 \dot{x}+\frac{5}{4} x=20$.
(c) Explain how to find a particular solution of $\ddot{x}-2 \dot{x}+\frac{5}{4} x=20+\cos \frac{t}{\pi}$.

Problem 3 Suggested weight: 20%.
Let $Q \in(0,1]$ be a constant. Consider the dynamic programming problem

$$
J_{t_{0}}(x)=\max _{u_{t} \in(0, Q]}\left\{\frac{1}{Q} \ln x_{T}+\sum_{t=t_{0}}^{T-1} \ln \left(u_{t} x_{t}\right)\right\}, \quad x_{t+1}=\left(1-u_{t}^{2}\right) \cdot x_{t}, \quad x_{t_{0}}=x>0
$$

General hints: You might need that $\ln \left(\left(1-u^{2}\right) x\right)=\ln (1+u)+\ln (1-u)+\ln x$. And, at some stage, sketching a graph might be useful. It is possible to start at part (b).
(a) Let in this part $Q=1$. Calculate J_{T-1} and u_{T-2}^{*}. (You need not calculate J_{T-2}.)
(b) Use induction to show that we have $J_{T-\tau}(x)$ of the form $A_{\tau}+B_{\tau} \ln x$ and where neither A_{τ} nor B_{τ} nor the optimal $u_{T-\tau}^{*}$ depend on x. (Hint: Make one more assumption.)
Part (b) does not ask you to calculate out A_{τ} nor B_{τ} nor $u_{T-\tau}^{*}$, but recall that Q could be an arbitrary constant in $(0,1]$.

Problem 4 Suggested weight: 30%.
Let $s \approx 0$ be a constant. Consider - but do not try to solve! - the optimal control problem

$$
\max _{u(t) \geq 0} \int_{s}^{3}\left(u e^{t-x}+\sin (t x)\right) d t \quad \text { subject to } \quad \dot{x}=x-2-u, \quad x(h)=2, \quad x(3) \geq 1
$$

(a) State the conditions from the maximum principle.
(b) Consider the (admissible!) control $u(t)=0$ for all t. Show that this cannot be optimal. (Hint: Proof by contradiction might be an idea.)
(c) Suppose a solution exists. The optimal value depends on initial time s, call it $v(s)$. Show that $v^{\prime}(0)=0$.
There are several terms that zero out, and for full score, you must justify each of them correctly. You cannot assume that $u^{*}>0$ everywhere even if we know that u^{*} must somewhere be >0.

