## ECON4140 Mathematics 3: exam 2022-05-25, 09:00-12:00

There are 2 pages of problems to be solved.
All printed and written material may be used, as well as both the approved calculators.
Grades given run from A (best) to E for passes, and F for fail.

- You are required to state reasons for all your answers.
- You are permitted to use any information stated in an earlier letter-enumerated item (e.g. "(a)") to solve a later one (e.g. "(c)"), regardless of whether you managed to answer the former. A later item does not necessarily require answers from or information given in a previous one.

Problem 1 Consider the matrix $\mathbf{A}=\left(\begin{array}{ccc}4 & 3 & 9 \\ 1 & 0 & 1 \\ -1 & 2 & 1\end{array}\right)$.
It may or may not be helpful to know that $\mathbf{A}$ has a rank equal to 3 , a determinant equal to 4 and a trace equal to 5 .
(a) Show that the vector $\mathbf{u}=(2,1,-1)^{\prime}$ is an eigenvector of $\mathbf{A}$.
(b) $\lambda=2$ is an eigenvalue of $\mathbf{A}$. Find an associated eigenvector $\mathbf{v}$.
(c) Show that every eigenvector of $\mathbf{A}$ is either a scaling of $\mathbf{u}$ or a scaling of $\mathbf{v}$. (I.e. it has no other eigenvectors. This part (c) might take longer time than part (a) or (b).)
(d) Decide the definiteness of the quadratic form $Q(\mathbf{x})=\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}$.

Problem 2 Consider the differential equation system

$$
\begin{equation*}
\dot{x}=-5 x+2 y+t, \quad \dot{y}=-2 x-y \tag{S}
\end{equation*}
$$

(a) Deduce a second-order differential equation for $x$. (Write out the calculations!)
(b) Find the general solution of that differential equation from (a).
(c) Consider the homogeneous system corresponding to (S). Sketch a phase diagram and indicate some solution curves.

Problem 3 Consider - but do not try to solve! - the optimal control problem

$$
\max _{u(t) \in U} \int_{1}^{\pi}\left(x \sin (\pi u / 6)-\pi x^{2}\right) d t \quad \text { subject to } \quad \dot{x}=(u-2) x, \quad x(1)=\pi, \quad x(\pi) \text { free }
$$

where $U=\{0,1,2,3,4,5,6\} \quad$ - i.e. you can choose $u(t)$ among seven distinct values. Note that $x(t)>0$ for any admissible pair $(x, u)$.
(a) State the conditions from the maximum principle.
(b) If an admissible control $u^{*}$ satisfies the conditions from part (a), what do we then know about $u^{*}(\pi)$ and (be precise here!) about $u^{*}(t)$ at times $t$ very close to $\pi$ ?
(c) Show that if an admissible pair $\left(x^{*}, u^{*}\right)$ satisfies the conditions from the maximum principle, then it does indeed solve the problem. (Hint: pay attention to the details!)

## Problem 4

(a) Let $f_{0}(t)=1$ and define inductively the functions $f_{n+1}(t)=-e^{t^{2} / 2} \frac{d}{d t}\left[f_{n}(t) e^{-t^{2} / 2}\right]$. Show that $f_{n}$ is a polynomial.
(b) Let $F$ be a twice continuously differentiable function of two variables $K>0$ and $L>0$, and recall that the elasticity of substitution $\sigma=\sigma(K, L)$ can be written as

$$
\sigma(K, L)=\frac{F_{K}^{\prime} F_{L}^{\prime}}{K L} \cdot \frac{K F_{K}^{\prime}+L F_{L}^{\prime}}{B(K, L)} \quad \text { where } \quad B=\left|\begin{array}{ccc}
0 & F_{K K}^{\prime} & F_{L /}^{\prime} \\
F_{K}^{\prime} & F_{K K}^{\prime \prime} & F_{K L L}^{\prime \prime} \\
F_{L}^{\prime} & F_{K L}^{\prime \prime} & F_{L L}^{\prime}
\end{array}\right|
$$

In certain economic applications you often see functions that satisfy the condition

$$
\begin{equation*}
\text { For all } K>0, L>0 \text { we have } \sigma>0, F_{K}^{\prime}>0, \text { and } F_{L}^{\prime}>0 \tag{*}
\end{equation*}
$$

and the question is to draw the right implication from that condition. That is:
Question: Precisely one of the following statements is true. Which one?
$\square$ If $\left(^{*}\right)$ holds, we know that $F$ is quasiconvex (but it need not be convex).If $\left({ }^{*}\right)$ holds, we know that $F$ is quasiconcave (but it need not be concave).If $\left(^{*}\right)$ holds, we know that $F$ is concave.
None of the above hold generally. (That is: Although many production functions satisfy both $\left({ }^{*}\right)$ and quasiconvexity and concavity, none of the latter two conditions follow mathematically from (*).)

