ECON4140 Mathematics 3: exam 2023-05-12

Problems / problem pages to be solved: 1 through 5, not counting this page. All printed and written material may be used. A calculator is available in Inspera. Grades given run from A (best) to E for passes, and F for fail.

- You are required to state reasons for all your answers.
- You are permitted to use any information stated in an earlier letter-enumerated item (e.g. "(a)") to solve a later one (e.g. "(c)"), regardless of whether you managed to answer the former. A later item does not necessarily require answers from or information given in a previous one.
- In this particular exam set, a matrix of the form of the below defined \mathbf{A} will appear in several problems.
If you use knowledge or facts from one Arabic-enumerated problem in another (e.g. 2 in 1 or vice versa) then point out what fact and what part (e.g. «and thus equation (E), by $2(\mathrm{c}) »$).
- "Suggested" weights: the grading committee is free to deviate.

The following matrix A will appear in multiple problems in this exam: For each real number R, define

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & 2 \\
-5 / 2 & R
\end{array}\right)
$$

The boldfaced character A will denote this matrix throughout the entire exam set, for various values of the constant R.

Problem 1 Suggested weight: 25%.
For each real constant R, consider the matrix $\mathbf{A}=\left(\begin{array}{cc}1 & 2 \\ -5 / 2 & R\end{array}\right)$ (as also given on page 0).
(a) Find the rank of \mathbf{A}. Specify in particular that single value R_{0} for R, which gives a different rank. (Hint: $R_{0} \neq 7$, cf. part (b).)
(b) - Show that the vector $\mathbf{u}=\binom{2}{1}$ is an eigenvector of \mathbf{A} when $R=7$, and

- find the associated eigenvalue μ.
(c) - How many distinct real eigenvalues does \mathbf{A} have in each of the two cases $R=R_{0}$ (cf. part (a)) and when $R=7$ (cf. part (b))?
(The numbers may or may not be the same.)
- Pick an R such that \mathbf{A} has a real eigenvalue $\lambda \neq \mu$, and find an eigenvector \mathbf{v} associated to this λ.
(Whether you can pick any of the values $R=R_{0}$ or $R=7$, depends on the answer to the previous bullet item: if they do not admit such a $\lambda \neq \mu$, you will have to try something else. There is no extra score for making a choice that leads to complicated calculations.)
(d) Decide the definiteness property of the quadratic form $Q(\mathbf{x})=\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}$. (The answer will depend on R.)

Problem 2 Suggested weight: 25%.

Throughout this problem, let R be a real constant. Consider:
the difference equation
the differential equation

$$
\begin{array}{r}
x_{t+2}-(R+1) x_{t+1}+(R+5) x_{t}=-R^{2} \\
\ddot{x}-(R+1) \dot{x}+(R+5) x=-R^{2} \\
\dot{x}=x+2 y+R, \quad \dot{y}=-\frac{5}{2} x+R y \tag{S}
\end{array}
$$

You can take note that the system (S) can be written in matrix form using the same matrix $\mathbf{A}=\left(\begin{array}{cc}1 & 2 \\ -5 / 2 & R\end{array}\right)$ as in Problem 1 and on page 0 , as $\binom{\dot{x}}{\dot{y}}=\mathbf{A}\binom{x}{y}+\binom{R}{0}$.
(a) From system (S), deduce (write out the calculations!) that x must satisfy the differential equation (E).
(b) Let $R=-1$ in this part:

- Show that the general solution of the differential equation (E) can be written of the form $A \cdot \cos (2(t-2023))+B \cdot \sin (2(t-2023))+Q$, and find Q.
- Explain how to find the general solution if the right-hand side were changed to «cos (πt)).
(c) Take for granted that there is a value R_{*} for R such that the homogeneous equation corresponding to the difference equation (D) has general solution of the form

$$
2 C \cdot(5 / 2)^{t}+D \cdot 2^{t}
$$

You are allowed to use the $<R_{*} »$ symbol without calculating its numerical value:

- When $R=R_{*}$: Find the particular solution of (D) (the inhomogeneous equation!) such that $x_{0}=0, \quad x_{1}=2023$.
(d) Let $R=-3$ in this part.
- Is (D) globally asymptotically stable?
- Is (E) globally asymptotically stable?

Problem 3 Suggested weight: 25%.

Consider optimal control problems of the form

$$
\max _{u \in(-\infty, \infty)} \int_{2023}^{2024}\left(\frac{5}{4} x^{2}-u^{2}\right) d t, \quad \text { subject to } \quad \dot{x}=x+2 u-1 \quad \text { where } \quad x(2023)=\bar{x}>0
$$

and where $x(2024)$ is free. (The initial state \bar{x} is a given positive number.)
(a) - State the conditions from the maximum principle.

- If these conditions hold for an admissible candidate (x, u) : is there any hope that Arrow's sufficient conditions will apply? (Mangasarian's will not!)
(b) Let (x, u) be admissible and satisfy the conditions from part (a), with u being a continuous function of t. From these conditions, calculate one of the following quantities - your choice, so pick the easiest one: $u(2023)$ or $u(2024)$ or $x(2024)$.
(c) Your task in this part is as follows:
- Show that the conditions in (a) imply the following differential equation: $\ddot{x}+4 x=-1$.

In order to answer it, you are allowed to use without proof the following information - which is also information given in Problem 2 parts (a) and (b); you may or may not need all pieces of information:
The differential equation system

$$
\binom{\dot{x}}{\dot{y}}=\mathbf{A}\binom{x}{y}+\binom{R}{0} \quad \text { where } \quad \mathbf{A}=\left(\begin{array}{cc}
1 & 2 \\
-5 / 2 & R
\end{array}\right)
$$

leads to x satisfying the differential equation

$$
\ddot{x}-(R+1) \dot{x}+(R+5) x=-R^{2}
$$

which in case $R=-1$ has general solution of the form

$$
A \cdot \cos (2(t-2023))+B \cdot \sin (2(t-2023))+Q
$$

where Q is a specific number, not a constant of integration.

Problem 4 Suggested weight: 20%.

Let $f(u)=-1$ if $u=1 / 2$ and 0 if $u=1$. Consider the dynamic programming problem

$$
J_{t_{0}}(x)=\max _{u_{t} \in\left\{\frac{1}{2}, 1\right\}}\left(-x_{T}+\sum_{t=t_{0}}^{T-1} f(u)\right) \quad \text { subject to } \quad x_{t+1}=u_{t} x_{t}, \quad x\left(t_{0}\right)=x \in(0,4) .
$$

Note that u_{t} is either $\frac{1}{2}$ or 1 , nothing in between.
To explain the dynamic programming problem, you can at each point in time either leave the state as is (so that $x_{t+1}=x_{t}$) and pay nothing, or you can pay 1 to reduce the state by fifty percent. At the end you have to pay x_{T}. You wish to minimize total cost.

The objective of Problem 4 is to show that when $t_{0}<T$ and $x<4$, the value of the program is the following:

$$
W(x)=\left\{\begin{array}{lll}
-x & \text { when } & x \in(0,2], \quad \text { and } \\
-(1+x / 2) & \text { when } & x \in(2,4)
\end{array}\right.
$$

You are not asked about the (more complicated) expressions when the starting point x is not in the interval $(0,4)$.
(a) Show that $J_{T-1}(x)=W(x)$ when $x \in(0,4)$.
(b) Prove by induction that $J_{T-N}(x)=W(x)$ when $x \in(0,4)$, for all $N=1,2, \ldots$.

Problem 5 Suggested weight: 5%.
Is it possible for a convex set S to contain precisely 2023 (distinct) points?
(In other formulation: is it possible for a convex S to be of the form $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{2023}\right\}$ with all points distinct?)

