
University of Oslo / Department of Economics English version only

ECON4140 Mathematics 3: exam 2024-05-22
Problems / problem pages to be solved: 1 through 5, including this page.

All printed and written material may be used. A calculator is available in Inspera.

Grades given run from A (best) to E for passes, and F for fail.

� You are required to state reasons for all your answers.

� You are permitted to use any information stated in an earlier letter-enumerated
item (e.g. �(a)�) to solve a later one (e.g. �(c)�), regardless of whether you managed
to answer the former. A later item does not necessarily require answers from or
information given in a previous one.

Suggested weighting (the grading committee can deviate at their discretion):
1/12 for Problem 5 and for each letter-enumerated item, except: Problem 1 counting 2/12
in total.

Problem 1 Consider the matrix M =

(
Q R
S −Q

)
, where Q, R, and S are real constants,

not all zero.

(a) Complete the statement (with justi�cation!):

The rank of M is <fill in number> except if <fill in condition>

(b) � If R · S = 0, what is/are the eigenvalue(s) of M?

� Show that if Q = 3 or −3, and R · S = 16, then −5 is an eigenvalue.

(c) Are there values of the constants such that M has no real eigenvalues?
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Problem 2 * Throughout this problem, assume M =

(
Q R
S −Q

)
to be invertible.

Consider �rst the linear di�erential equation system(
ẋ
ẏ

)
= M

(
x
y

)
+

(
0
1

)
(a) � Deduce a second-order di�erential equation for x(t) for all Q, R, S.

(Carry out the calculation in detail!)

� Find its general solution when Q = 3, R = 16, S = 1. (Hint in footnote.)

Let ϕ(x) be a twice continuously di�erentiable function, and let E be a constant. Consider
di�erential equation systems of the following form, valid where y > 0:

ẋ = ϕ(x)− y−2, ẏ = E − y · ϕ′(x) (*)

(b) Suppose system (*) has an equilibrium point (i.e. a stationary state) (x̃, ỹ).
Show that if ϕ′′(x̃) < 0 then (x̃, ỹ) must be a saddle point. (Do not try to �nd (x̃, ỹ).)

From now on, let ϕ(x) = (5− x) · x and E = 3
2
so that (*) becomes

ẋ = (5− x) · x− y−2, ẏ =
3

2
− y · (5− 2x) (**)

(c) Find the limit (as t → +∞) of the slope of the non-constant particular solutions
which converge to the saddle point (x̃, ỹ) = (1, 1

2
).

The following plot indicates the nullclines of system (**) in the part of the phase diagram
where 0 < x < 5, 0 < y < 1.5. Three points A (lowest), B and C are given with bullet
marks; one on each nullcline (both near the y axis) and point C near (3, 1):

A

B

C

(d) Determine and describe the direction of motion at each of these three points A, B
and C. (Justify the appropriate signs! You can also indicate with arrows on a
copied sketch, but you are not asked to draw solution curves.)

*Same matrix M as in Problem 1, but with the additional condition on the constants that M−1 exists.
� Part (a) might use the information given in Problem 1 part (b).
� Part (b) may be harder than part (c); it is possible to solve (c) with or without part (b).
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Problem 3 � Let x0 and T be positive constants. Consider the optimal control problem

max
u(t)∈[0,14]

∫ T

0

(
u(t)− 3

2
x(t)

)
dt when ẋ = (5− x)x− u2

4
, x(0) = x0, x(T ) ≥ 0.

In the following, suppose that (x, u) satis�es the conditions from the maximum principle,
with adjoint (�costate�) process p = p(t).

(a) � State the conditions from the maximum principle.

� Could u(t) be zero? (Warning: p(t) could attain negative values.)

(b) Deduce the following di�erential equation system:

ẋ = (5− x)x−
( 1

max{ p , 1/7}

)2

i.e. =

{
(5− x)x− 1/p2 if p ≥ 1/7

(5− x)x− 49 if p < 1/7

ṗ =
3

2
− (5− 2x)p

(c) Take for granted that when p ≥ 1/7, the system from (b) is the same as system
(**) from Problem 2 part (c) with y = p, and that the line p = 1/7 lies below the
nullclines like this (dashed):

� The conditions from the maximum principle restrict the point (x(T ), p(T ))
(that is, at �nal time T � the �endpoint� of the system!) to a �small� set in
this diagram. Which set? I.e., where could (x(T ), p(T )) possibly be?

� If furthermore 0 < u(t) < 14 for all t large enough, (x(T ), p(T )) is restricted
further (i.e. we know more). Where could (x(T ), p(T )) possibly be in this case?

Both questions ask for the whole �possible set� as follows from the conditions � not
merely an example.

�Though it is surely possible to solve Problem 3 without Problem 2, it cannot be ruled out that some
insight from Problem 2 could be useful.
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Problem 4 Let a > 0 and p ∈ (0, 1) be constants. Consider the dynamic programming
problem

Jt0(x) = max
ut∈[0,1]

{
xT + a1−p · xp

T +
T−1∑
t=t0

(
utxt + (utxt)

p
)}

where xt+1 = xt − utxt, xt0 = x (> 0)

�It is possible (and could maybe be quicker) to show (b) �rst � possibly even with the hint
for the more general �bonus� case � and then deduce the answer to (a) from there.

(a) Find JT−2(x) if a = p = 2/3.

(b) In this part, allow for more general constants: any p ∈ (0, 1) and any a > 0.

� Show that at time t = T − k, we have the form

JT−k(x) = x+ A1−p
k · xp where Ak does not depend on x,

� Deduce a di�erence equation for Ak, starting at A0 = a.
(Carry out the maximization to needed to eliminate the �u� letter. Answer will
look fairly simple in the end.)

�Hint and possible bonus�� How far can you get in the �rst bullet item if you allow
for the following generalizations? (I): The number p might either be ∈ (0, 1) or > 1,
and (II): In place of ut ∈ [0, 1], assume ut ∈ U where U is closed and bounded and
contained in [0, 1]

�The assumptions ensure that xt ≥ 0 (and xt−1 ≥ xt) for all t = t0 + 1, . . . , T , so (utxt)
p is well-de�ned.

a1−p means a to the (1− p)th power and is just another constant. The form with the (1− p)th power,
also occurring in A1−p

k in part (b), might hopefully make some calculations more convenient.

�For (b):
� As �hint�: Depending on your work�ow, this could speed up some of your calculations.
� �possible bonus� means that everything but this correct, will be su�cient for 100 percent score �
but that the graders may at their discretion, take an insightful (brief!) observation here into account
on papers that would otherwise be �narrowly missing a grade�.
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Problem 5 Let f be a function of a real variable, and continuous on the entire R.
Show that if f is one-to-one, i.e. it has an inverse function f−1, then f−1 is quasiconcave.

Hints (if you need them):

� You will need a particular property that follows from continuity.¶ You are allowed
to assume continuous di�erentiability if that makes it simpler, but that property is
not essential.

� Recall that an inverse function means f−1(f(x)) = x (all x ∈ R) and f(f−1(y)) = y
(all y in the range of f) � we are not talking about one divided by anything.

(end of problem set)

¶ Indeed if you drop the assumption that f is continuous on its (convex!) domain, the claim is false!
Counterexamples without that assumption: g(t) = 1/t de�ned except at 0: it is its own inverse, but
not a quasiconcave function. h de�ned as h(t) = g(t) and h(0) = 0 (thus de�ned on R) is also its own
inverse, but not continuous at 0 and not quasiconcave.
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