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ECON4140 Mathematics 3: the 2020-06-23 exam solved
See the ordinary exams' grading guidelines for considerations concerning ECON4140

exams in general and spring 2020 in particular.

Problem 1 of 5. Consider the following di�erential equation and di�erence equation:

ẍ = 1
2
ẋ− 1

8
x+ f(t) (D)

xt+2 =
1
2
xt+1 − 1

8
xt + gt (E)

(a) Find the general solutions of (D) and (E) when f(t) = 2020 = gt (constants).

(b) Explain how you would go forth to solve (D) when f(t) = 2020+t2020+2020 sin(2020 t).

(c) � Is (D) stable? Is (E) stable?

� Do we have tools to decide stability of (D) and/or (E) without solving?

Solution: (c) �rst:

(c) With a = −1/2 and b = 1/8, we have (D) unstable (as a < 0) and (E) stable
(because both 1/2 = |a| is < 1 + b and b = 1/8 is < 1).
[Notes: calculating the characteristic roots (1± i)/4 first, shall qualify as «with-
out solving» although one is quite near a solution by then. Moreover, it is not
asked for asymptotic stability nor for the «outwards spiraling» nature of the
unstable solution]

(a) The characteristic equation r2− r/2+1/8 = 0 yields 2r = 1/2±
√

1/4− 1/2 and
non-real roots r = (1± i)/4.
(D): Constant particular solution satisfying 0 = −u∗/8 = 2020, so general solu-

tion 16160 + et/4
(
C cos(t/4) +D sin(t/4)

)
.

(E): Constant particular solution satisfying u∗ · [1 − 1/2 + 1/8] = 2020 ⇔ u∗ =
16160/5 = 3232. General solution:

3232 + et/
√
8
(
C cos(θt) +D sin(θt)

)
with cos θ = −1/2

2/
√
8
= −2

√
2

4
= −1

2

√
2.

[Note: it is OK to stop here (or cos θ =
√
1/2 by symmetry); it is not

required to get to θ = −π/4 (or π/4), as the course has focused on the
recipe and by no means on trigonometric tables.]

(b) Try u∗ = K cos(2020t)+L sin(2020t)+ q(t) where q is a 2020-degree polynomial,
and �t all 2023 coe�cients. [Note the essential point: both a cos and a sin are
needed, and a full polynomial. Not merely «sin» and «Qt2020 +R».]
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Problem 2 of 5. Consider the di�erential equation system

ẋ = y − cos
πx

3
− 1

2
ẏ = |x| − y

(S)

(a) The system has an equilibrium point (a.k.a. �stationary state�) at (x, y) = (1, 1).
Show that it is a saddle point.

(b) The system has one more equilibrium point (x̃, ỹ). Find and classify it:

� Decide if it is stable or not;

� Decide if it is oscillating or not;

� If unstable, decide if it is a saddle point.

(c) There is a non-constant particular solution (x(t), y(t)) which converges to (1, 1) as

t→ +∞. Find lim
t→+∞

y(t)− 1

x(t)− 1
for this solution path.

Solution: For (a) and (b) we need the Jacobian matrix

(
π
3
sin πx

3
1

sign x −1

)
(a) At (1, 1), the Jacobian becomes

(
π
3
sin π

3
1

1 −1

)
. The determinant −(π

3
sin π

3
+ 1) is

negative (as sin(π/3) > 0).

(b) Both cosine and absolute value are even functions, so because (1, 1) is an equi-
librium point, so is (−1, 1). There, the Jacobian has determinant 1− π

3
sin −π

3
=

1 + π
3
sin π

3
> 0. The trace is negative as π

3
sin π

3
< 1. So it is stable. It is spi-

ralling, i.e. dampened oscillations if tr2 − 4det is negative, which is the case: for
A =

(
a b
c d

)
, we have (a− d)2 +4bc which becomes (1− π

3
sin π

3
)2− 4 which is < 0.

[Notes: With a calculator at hand, one must arguably accept the claim that
(1− π

3
sin π

3
)2 − 4 < 0 without further argument. (It is probably not the best use

of exam time to elaborate on it.)]

(c) The limit is the slope of the eigenvector corresponding to the negative eigenvalue
µ of the Jacobian at (1, 1). That eigenvector satis�es (1 , −1 − µ)v = 0, and so

v = (1 + µ , 1)′ has slope 1 + µ = 1 +
1

2

(π
3
− 1−

√
(
π

3
− 1)2 + 4

π

3
+ 4
)
.

[Note: The «mock exam» only asked for the sign of the slope, as that was eas-
ier in that problem. Here, it is arguably easier to calculate the slope first, hence
the question formulation. Getting the sign would likely in practice have become
a calculator exercise, rather than rewriting into 1

2

(
π
3
+ 1−

√
(π
3
+ 1)2 + 4

)
.]

2



Problem 3 of 5. Consider the variational problem(s)

max /min

∫ T

0

e−rt ln
(
G(x(t), ẋ(t))

)
dt subject to x(0) = x0, x(T ) = 0

where all constants are > 0. This problem concerns the function

G(x, y) = R + (2− x) · x− y, R > 0 constant

but for part (a) it is probably a good idea � and it is worth partial score by itself � to �rst
use a general G (but insert for ∂G/∂y = −1).

(a) Write out the associated Euler equation.

(b) Suppose we have found an x = x(t) that satis�es the Euler equation with x(0) = x0
and x(T ) = 0. Can we then conclude that this solves the maximization problem?
The minimization problem? Neither?

Solution: (b) does not need (a):

(b) We have G a sum of concave functions, and then lnG is an increasing concave
transformation and e−rt > 0. So the integrand is concave in (x, ẋ) for each t and
we will have a solution of the maximum problem.

(a) To calculate ∂F
∂x
− d

dt
∂F
∂ẋ
, we write as e−rt 1

G
∂G
∂x
− d

dt

[
e−rt 1

G
∂G
∂y

]
= e−rt 2−2x

G
+ d
dt

[
e−rt 1

G

]
and the latter term is −re−rt/G− e−rt/G2 · d

dt
G(x(t), ẋ(t)). Multiplying by G2ert

and inserting:

(2− 2x)G = rG+
∂G

∂x
ẋ+

∂G

∂y
ẍ = rG+ (2− 2x)ẋ− ẍ

so that ẍ = r ·
(
R + (2− x)x− ẋ

)
+ 2(1− x) ·

(
2ẋ−R− (2− x)x

)
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Problem 4 of 5. Let β ∈ (0, 1) be a constant. Consider the dynamic programming
problem

Jt(xt) = max
ut∈U

T∑
s=t

βs−t(xt − βu2t ) subject to xt+1 = βxt + (1− ut) · ut

You can choose � once for the entire Problem 4 � whether to use U = (−∞,+∞) or [0,∞)
or [0, 1]. Your choice might a�ect what arguments you need to complete part (a).
In the following, neither Aτ nor Bτ (nor aτ nor bτ ) can depend on x, only on time τ

remaining to the end of the planning horizon.

(a) Show by induction that the value JT−τ (x) takes the form Aτx + Bτ , and �nd a
di�erence equation for Aτ .

If you prefer not to use the βs−t formulation, you can equivalently show that the
functionMt = βtJt(xt) = maxut≥0

∑T
s=t β

s(xt−βu2t ), takes the formMT−τ = aτx+bτ ;
then �nd di�erence equations for aτ and bτ .

(b) Put t = 0. Let T → +∞ to get an in�nite-horizon problem.

� State the associated Bellman equation for the value function J(x).

(In this problem you must use J .)

� Show that if J(x) = Ax + B satis�es the Bellman equation (with A and B
constants) then A = 1/(1− β2).

(You are not asked to show that such a function actually solves the in�nite
horizon problem.)

Solution (for all three choices of U ):

(a) True at τ = 0: JT (x) = maxu∈U{x− βu2} = x with u = 0, all three choices of U .

Suppose true at τ . Then at τ + 1:

JT−(τ+1)(x) = max
u∈U

{
x− βu2 + βJT−τ (βx+ (1− u)u)

}
= max

u∈U

{
x− βu2 + βAτ ·

[
βx+ (1− u)u+Bτ

]}
= (1 + β2Aτ )︸ ︷︷ ︸

=Aτ+1

x+ βBτ + βmax
u∈U

{
− u2 + Aτ · (1− u)u

}
︸ ︷︷ ︸

=Bτ+1, does not depend on x

provided the maximum exists; it will for U compact, by the extreme value the-
orem, but for all three alternatives it su�ces that we can show that the second-
order coe�cient −(1+Aτ ) is negative, as then we have a concave quadratic. And
Aτ+1 = 1 + β2Aτ is positive by induction, as A0 = 1 > 0 and β > 0.
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(b) The Bellman equation becomes as the dynamic programming equation except

dropping the time indices: J(x) = max
u∈U

{
x− βu2 + βJ(βx+ (1− u)u)

}
.

Testing the form Ax+B, we insert to get:

Ax+B = max
u∈U

{
x− βu2 + βA ·

[
βx+ (1− u)u)

]
+ βB

}
= (1 + β2A)x+ βB + βmax

u∈U

{
− u2 + A(1− u)u

}
and we match x coe�cients: (1− β2)Ax = x and so A = 1

1−β2 .
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Problem 5 of 5. Let n ≥ 2 be a natural number and s be a real constant. De�ne Jn to
be the n× n matrix where element (k, `) is 1 if k+ ` = n+1, and 0 otherwise1. Note that
J3 has a �middle element� number (2, 2), while J4 has no single middle element.
Let the matrix A = An,s be de�ned as In + sJn, where In is the n× n identity matrix.

(a) Let a = (1, 0, . . . , 0)′ and b = (0, . . . , 0, 1)′ have only a single nonzero element. Let
u = a+ b and v = a− b.

For each n and each s: Check whether the vectors u and/or v is/are eigenvector for
Jn and/or An,s.

(b) In this part let n = 3 and s 6= 0.

� Calculate the characteristic polynomial of A.

� Find � or disprove the existence of � an eigenvector w which is not a linear
combination of a and b.

(c) Suppose that the rank An,1 equals n. Can then s be equal to 1? Your answer might
depend on n.

(d) Let Y and Z be symmetric n × n matrices, both of which have 0 as their smallest
eigenvalue. Prove the following facts about M = Y + Z:

� M has no negative eigenvalues.

� [Might be di�cult.] If Y and Z have no eigenvector in common, we know that
M has all its eigenvalues positive.

Solution:

(a) Left-multiplying by the matrix J turns every vector upside-down. That does not
change u, but it changes sign on v. We have:

u: We have Ju = u (eigenvector!) andAu = Iu+sJu = (1+s)u (eigenvector!).

v: Now, Jv = −v (eigenvector!) and Av = Iv+sJv = (1−s)v (eigenvector!).

(b) � The characteristic polynomial: |A − µI| =
∣∣∣ 1−µ 0 s

0 1+s−µ 0
s 0 1−µ

∣∣∣ = (1 −
µ)
∣∣ 1+s−µ 0

0 1−µ
∣∣+ s

∣∣ 0 1+s−µ
s 0

∣∣ = [(1− µ)2 − s2](1 + s− µ).

1Examples: J2 = ( 0 1
1 0 ), J3 =

(
0 0 1
0 1 0
1 0 0

)
while J4 =

(
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

)
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� µ = 1 + s is a double root, so by (a) any third eigenvector must correspond
to this. A− (1+ s)I = I+ sJ− I− sI = s(J− I) and because s 6= 0, w must
satisfy Jw = w, i.e. be itself turned upside down. That is, w = (0 , 1 , 0)′.

[The answer is not unique. Any linear combination of u and (0, 1, 0)′ is an
eigenvector, and an equivalent answer could be e.g. (1, 1, 1)′.]

(c) No. When s = 1, the �rst and last columns are equal.
[Alternatively: when s = 1, we have an eigenvalue for 1 − s = 0, and so the
determinant vanishes. This question really only checks whether one knows
what it takes to have full rank.]

(d) � With all eigenvalues nonnegative, Y and Z are both positive semide�nite,
and so x′(Y + Z)x = x′Yx + x′Zx ≥ 0. M is positive semide�nte and
therefore has all eigenvalues nonnegative.

� Suppose for contradiction that there is an x 6= 0 such that x′Yx+x′Zx = 0,
and as both terms are nonnegative, we must have x′Yx = 0 and x′Zx = 0.
By positive semide�niteness, 0 is the minimum value.

The Lagrange �rst-order condition for max/min of x′Yx subject to ||x|| = 1,
is that x is an eigenvector of (Y + Y′)/2 = Y. Similarly, x must be an
eigenvector of Z. This contradicts the assumption that we have no common
eigenvectors.
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