
Essentials of optimal control theory in ECON 4140 (2018)
Things you need to know (and a few things you need not care about).

A few words about dynamic optimization in general. Dynamic optimization can be
thought of as �nding the best function rather than the best point. We have two tools:

• Dynamic programming. In ECON4140, that is used for discrete-time dynamic opti-
mization. The method involves the optimal value. If value depends on state x ∈ R
and time t and the optimal value is Vt(xt), then one trades o� immediate payo�
f (direct utility) against future optimal value (indirect utility) Vt+1(xt+1). If our
control at time t is ut, f = f(t, x, u) depends on time, state and control, and so
does xt+1 = g(t, x, u), then the best we can do with state xt = x is to maximize
f(t, x, u) + Vt+1(g(t, x, u)) wrt. our control u. If Vt+1 is a known function, that gives
us the optimal u∗t in �feedback form�, as a function1 of time and state.

� In �nite horizon T , we can recurse backwards with known VT , then VT−1, ...

� In�nite horizon models has some appealing properties, one of which is that if
there is no explicit time in the dynamics and only exponential discounting then
the time-dimension vanishes. Using a current-value formulation βtf cv = f and
assuming f cv a function of state and control only (no �t�) as well as xt+1 =
g(xt, ut) (also without explicit t), we get the Bellman equation

V (x) = max
u

{
f cv(x, u) + βV (g(x, u))

}
with the same V on the LHS and the RHS (there are in�nitely many steps left
both today and tomorrow). The optimal u is given implicitly in terms of V .

• Calculus of variations or the Pontryagin maximum principle. These methods work
by varying the strategy, and do not require the value function. There is no �V � in
the Hamiltonian nor in the Euler equation, there is only state and control (and in
the calculus of variations method, the control is ẋ).

� The discrete-time Euler equation (you have seen it in dynamic macro?) does
in a way the same thing: Consider a time-homogeneous problem with current-
value formulationmax

∑∞
t=0 β

tf cv(xt, xt+1). The �rst-order condition for optimal
state xτ at a certain time τ ∈ N is found by taking the two terms that involve it
(namely βτ−1f cv(xτ−1, xτ )+β

τf cv(xτ , xτ+1)), di�erentiating wrt. xτ and putting
equal to zero. Notice: no �V � in that condition.

• ECON4140 uses dynamic programming in discrete time and the maximum principle
in continuous time. There exist a continuous-time Bellman equation (often used in
stochastic systems) and a discrete-time maximum principle, but those are not at all
curriculum.

1if the maximizer is not unique, is it then a function? Then, it does not matter which one we choose, so
we can pick a function.
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The maximum principle. Necessary conditions. Let the timeframe [t0, t1] be given
2.

Consider the problem to maximize wrt. u(t) ∈ U the functional
∫ t1
t0
f(t, x(t), u(t))dt where

x starts at x(t0) = x0 (given) and evolves as ẋ(t) = g(t, x(t), u(t)); we shall consider the
following three possible terminal conditions (a) x(t1) = x1 (given), (b) x(t1) ≥ x1, or (c)
x(t1) free.
Imagine a trade-o� between immediate payo� (or, direct utility) today f(t, x, u) and

growth ẋ of the state. With ẋ(t) = g(t, x, u), we weigh immediate payo� at one3 and weigh
growth at p = p(t). Our control is then set to maximize the Hamiltonian

H(t, x, u, p) = f(t, x, u) + pg(t, x, u)

(over u in the control region U which we are allowed to choose from � it need not be interior).
The rest of the maximum principle is about determining a weight p such that this gives
us a solution to the dynamic problem. p is often referred to as the �adjoint variable� or
�costate� or sometimes �shadow price�. The following gives necessary conditions:

0: Form the Hamiltonian H(t, x, u, p) = f(t, x, u) + pg(t, x, u).

1: The optimal u∗ maximizes H.

2: The adjoint p satis�es ṗ = −∂H
∂x

(evaluated at optimum), with the so-called transversality
conditions on p(t1):
(a') no condition on p(t1) if the problem has x(t1) = x1; (b') if the problem imposes
x(t1) ≥ x1, then p(t1) ≥ 0 with equality if x∗(t1) > x1 in optimum; (c') if there is no
restriction on x(t1), then p(t1) must be = 0.

3: Also, the di�erential equation for x must hold: an optimal x∗ must satisfy ẋ∗(t) =
g(t, x∗(t), u∗(t)) with initial condition x∗(t0) = x0 and if applicable, the terminal con-
dition.

These conditions may be regarded as a solution steps recipe although in practice it may
not be so straightforward as to call it a �cookbook�. Next page:

2On page 7: there are problems where time can be optimized too.
3Here there is a theoretical catch which is not exam relevant, except see the second bullet below in order
not to be confused by any �p0�:
Suppose that there is no �optimization�, and that there is only one control u∗(t) such that the terminal
condition holds. If your control has to be reserved to ful�ll that condition, then you cannot optimize for
utility. Then the weight on f has to be zero. That is the �p0� constant in the book, which looks a bit
akin to the Fritz John type conditions covering the constraint quali�cation in nonlinear programming.

• You can disregard the p0 (i.e., put it equal to one) for exam purposes.

• But: Do not put p(t0) equal to one, because the constant p0 is not the same thing as p(t0)!
(Nor the same as p(0). In case you wonder what the notation is about: it is from the case with
several states x ∈ Rn. Then we have an n-dimensional p(t), and the p0 is then the �zeroeth�
dimension.)
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More «cookbook»-alike solution steps:

step 0: Form the Hamiltonian H(t, x, u, p) = f(t, x, u) + pg(t, x, u).

step 1: The optimal u∗ maximizes H.

• Whatever state x and costate pmight be, then that gives us a relation between
u∗ and (t, x, p). With the possible reservation that the maximizer may not be
unique4, this gives us u∗ as a function

û of (t, x, p)

where x = x∗ is the optimal state, and p is the adjoint satisfying the next
step. (Note that in practice you may have to split between cases.)

step 2: We have a di�erential equation for p:
ṗ = −∂H

∂x
(evaluated at optimum),

with the so-called transversality conditions on p(t1):

(i) In case the terminal value x(t1) is �xed, there is no condition on p(t1).

(ii) In case the problem imposes x(t1) ≥ x1, then we get a complementary slack-
ness condition on p(t1): it is ≥ 0, with equality if x(t1) > x1 (the latter
corresponds to the next item).

(iii) If there is no restriction on x(t1), then p(t1) must be = 0.

If we have a function û(t, x, p) for the optimal control, then plugging this into −∂H
∂x

will give ṗ as a function of (t, x∗, p).

step 3: Then we have the di�erential equation for the state. Inserting û there as well, gives
a di�erential equation system

ẋ∗ = φ(t, x∗, p), ṗ = ψ(t, x∗, p)

and the conditions on x(t0), x(t1) and p(t1) determine the integration constants.

Sufficient conditions. We have two sets of su�cient conditions. Suppose we have found
a pair (x∗, u∗) which satis�es the necessary conditions. This pair is a candidate for opti-
mality. We can conclude that it is indeed optimal if it satis�es one of the following:

• The Mangasarian su�ciency condition: With the p = p(t) that the maximum prin-
ciple produces, then H is concave wrt. (x, u) for all t ∈ (t0, t1).

• The Arrow su�ciency condition: Insert the function û(t, x, p) for u in the Hamiltonian
to get the function Ĥ(t, x, p) = H(t, x, û(t, x, p), p). With the p = p(t) that the
maximum principle produces, then Ĥ is concave wrt. x for all t ∈ (t0, t1).

The Arrow condition is more powerful: if Mangasarian applies, then Arrow will always
apply. However, the Mangasarian condition could be easier to verify.

4in which case several functions are possible. For necessary conditions, you should consider them all. For
su�cient conditions, you may �guess one and verify that it solves�. See the �modi�ed example 2�.
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«Example» 1 (not yet worked out completely). A concave problem. In matrix nota-

tion, let f(t, x, u) =
[(
k1, k2)

(
x
u

)
− 1

2
(x, u)Q

(
x
u

)]
e−rt whereQ =

(
q11 q12
q12 q22

)
is symmetric and

positive semide�nite with q22 > 0, and let g(t, x, u) = (m1, m2)
(
x
u

)
. Suppose u can take any

real value. No matter what the terminal condition on x is, we will have H(t, x, u, p) = f+pg
is concave in (x, u) regardless of the sign of p, so Mangasarian will apply to the solution
we �nd as follows5:

step 0: We have

H(t, x, u, p) =
[(
k1, k2)

(
x
u

)
− 1

2
(x, u)Q

(
x
u

)]
e−rt + p(m1, m2)

(
x
u

)
=
[
k1x− 1

2
q11x

2 + (k2 − q12x)u− 1
2
q22u

2
]
e−rt +m1px+m2pu

step 1: The optimal u∗ maximizes H, and can be written as û(t, x∗, p) where (from the
�rst-order condition for u)

û(t, x, p) =
(k2 − q12x)e−rt +m2p

q22

step 2: The di�erential equation for p is ṗ = (q11x− k1 + q12u)e
−rt −m1p to be evaluated

at optimum; that is, we insert x∗ for x and û(t, x∗, p) for u:

ṗ =
(
q11x

∗ − k1 + q12
(k2 − q12x∗)e−rt +m2p

q22

)
e−rt −m1p

Notice this is linear in (x∗, p) (we should reorder coe�cients, but unfortunately it
is not homogeneous). Then we have the transversality conditions corresponding to
whatever the terminal conditions were for x.

step 3: Inserting û in the di�erential equation for x∗, we �nd

ẋ∗ = m1x
∗ +m2û(t, x

∗, p) = m1x
∗ +m2

(k2 − q12x∗)e−rt +m2p

q22

Again, this is linear in (x∗, p).

The problem then reduces to solving a linear equation system, which unfortunately has
time-dependent coe�cients. The current-value formulation below resolves that!

5Indeed, we can assume U to be an interval as well, and concavity will still hold � but then the problem
becomes harder when u hits and endpoint.
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Example 2 (H not concave wrt. (x, u), but Arrow’s condition applies) This looks
like one given in class, but modi�ed so that Mangasarian does not apply. Suppose u can
take values in [0, K] where K > 0 is a constant, and consider the problem max

∫ T
0
e−δtu2dt

subject to ẋ = −u, x(0) = x0 (a constant > 0) and x(T ) required to be ≥ 0. We therefore
assume x0 < KT (otherwise, we would have x(t) ≥ 0 automatically). Let in this problem
δ > 0. Notice that the Hamiltonian H(t, x, u, p) = e−δtu2 − pu is convex in u. That means
(a) that the maximizing u∗ is either 0 or K, and (b) we cannot use Mangasarian. But we
can use Arrow: since x does not enter H, then inserting for û (which does not depend on
x, as the maximization does not) we get no x in Ĥ. Considering Ĥ a function of x only, it
is constant, and that is concave. (Not strictly, but we do not need that.) So whatever we
get out of the following, will indeed be optimal. Let us work out the steps.

step 0: De�ne H(t, x, u, p) = e−δtu2 − pu.

step 1: The optimal u∗ maximizes H. By convexity, we must have either the endpoint 0 or
the endpoint K, and we just compare the two, e−δtK2 − pK vs. zero. We have

û =


K if K > peδt

0 if K < peδt

0 or K if K = peδt (the maximization cannot tell which one)

This condition can not determine û in the case peδt = K. If that happens at only
one point in time (or never), then it is not a problem, as changing an integrand at
a single point does not change any state. If we were to have p(t) = Ke−δt on an
entire positive interval, we would be in trouble (although, by su�cient conditions,
we could try to guess and verify!).

step 2: Because H does not depend on x, then ṗ = 0, so p is a constant P . By the
transversality condition, P ≥ 0 with equality if x∗(T ) > 0.

• Good news! The �?� case for û will not be an issue: there can only be at most
t for which K = Peδt. If there is one such, then we switch control (and we
switch from K to 0 ... exercise: why?).

step 3: We have ẋ = −K (if K > Peδt) or = 0 (if the reverse inequality holds). We need
to determine when we have what.

So now we have the conditions, and we can start to �nest� out what could happen.

• Could we have x(T ) > 0? Then we must have p(T ) = 0 hence P = 0. Then we would
always have K > Peδt and always u∗ = K. But then x∗(T ) = x0 − KT which by
assumption is ≤ 0. Contradiction! So x(T ) = 0.

• Indeed, we cannot have u∗ ≡ K. Therefore, we must have K = Peδt
∗
for some

(necessarily unique) t∗ ∈ (0, T ). Then u∗ = K on (0, t∗) and 0 afterwards. Adjust
then t∗ so that we hit zero there: t∗ = x0/K.

So we must choose u∗ maximally until we hit zero, and keep x∗ constant at zero from then
on. By Arrow's condition, this is indeed the optimal solution.
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Modified example 2. Now drop the assumption that δ > 0. The case δ < 0 will not add
much insight � we will push the u∗ = K period to the end instead. But suppose now δ = 0,
and let us see what happens.

step 0: De�ne H(t, x, u, p) = u2 − pu.

step 1: The optimal u∗ maximizes H. Again, we have endpoint solution:

û =


K if K > p

0 if K < p

(0 or K if K = p; the maximization cannot tell which one)

step 2: Again, p is a constant P ≥ 0 (equal to zero if x∗(T ) > 0.)

step 3: The di�erential equation for the state must hold.

Again we get a contradiction if we assume x(T ) > 0. So x(T ) = 0. In particular, that means
we cannot have u∗ ≡ 0. Therefore, we must have K ≥ P . And we cannot have u∗ ≡ K, as
that yields x∗(T ) < 0. So K ≤ P .

• With K = P , the necessary conditions cannot tell us whether to use u∗ = 0 or
u∗ = K.

• But we know that we must have u∗ = K for precisely long enough to end up at zero.
The necessary conditions cannot tell when to run at full throttle.

• Actually, it does not matter. No matter when, we would get the same performance
Kx0. But that is maybe not so easy to see, was it?

• Well let us argue as follows: in the case δ > 0, we had u∗ = K up to t∗ = x0/K. Let
us just make the guess that this is optimal.

� It does satisfy all the conditions from the maximum principle!

� By the Arrow condition, it is optimal.

(It just isn't uniquely optimal. In fact, all the other �u∗ = K for a period totalling
x0/K in length� will be optimal � and Arrow's condition will verify that!)

Even more modified example 2. Restrict u(t) to being either zero or K. We know
already that we have optimal solutions for the previous modi�cation, with that property,
so they must be optimal here as well. But take note that Arrow's condition works even
then U is not a convex set, and could be used to verify optimality!
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Existence/uniqueness of optimal control: no general results on curriculum. The
only �exam relevant� concerning uniqueness is if you can show that only one control
satis�es necessary conditions. The only �exam relevant� concerning existence is if you
have found a solution by su�cient conditions, or � for calculus of variations, mainly, when
conditions are the same for min and max � when it is clear that no solution exists.

Sensitivity. The optimal value V depends on (t0, x0, t1, x1) although no �x1� if x(t1) is
free. With exception for the latter, and to the level of precision of this course, we have the
following sensitivity properties:

• ∂V
∂x0

= p(t0).

• ∂V
∂x1

= −p(t1) except in the free-end case. Note that the �x1� variable is a constraint
you have to ful�l, so the interpretation is that p(t1) is the marginal loss of tightening
it by requiring you to leave one more unit at the table in the end.

• ∂V
∂t1

= H(t1, x
∗
1, u
∗(t1), p(t1)) is the marginal value of having one more time unit in the

end. That means, that if you were actually allowed to choose when to stop, then the
�rst-order condition would be H = 0 at the �nal time. (But for optimal stopping,
the su�cient conditions presented herein are no longer valid!)

• ∂V
∂t0

= −H(t0, x0, u
∗(t0), p(t0)). The minus sign because increasing t0 gives you one

unit less of time.

Note that −p(t1) is the t0-present value. For current value formulation, see the next page

Infinite horizon: not curriculum. Conditions for in�nite horizon are not curriculum.
At worst, you could be asked what happens when t1 becomes large. (That is, limit of �nite
horizon problems.)
That means that phase planes for in�nite horizon problems are not curriculum per se.

But phase planes for di�erential equation systems are curriculum per se, and could also
be helpful for solving the optimal control problems you can be asked to handle. See next
page and examples in lectures.

Variable final time to be optimized. (Not to be stressed in this semester, but an examp-
le could be given in class. The Hotelling rule, ... )
In some problems, the upper horizon t1 is subject to optimization. Suppose that the

optimal t1 is > t0 (so that it is interior); the �rst-order condition is then ∂V
∂t1

, that is,
H(t1, x

∗
1, u
∗(t1), p(t1)) = 0. This and the maximum principle forms necessary conditions.

Note: When t1 is free, we no longer have su�cient conditions. (Not in this course nor
textbook! There are some, given in Seierstad and Sydsæter's 1987 textbook on optimal
control theory.)

[Current values: �ts one page, so pagebreak here.]
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Current-value formulation. You will not be asked directly to know it (it has been given
at the exam, but then with a hint on what to do to get it) � but it could be very helpful,
especially in the following case: Suppose running utility has exponential discounting and
there is no other �explicit time-dependence� (and in particular so in in�nite horizon,
which is not curriculum. Here is what happens: Suppose that g(t, x, u) does not depend on
t directly, and that f(t, x, u) = e−rtf cv(x, u), the �cv� for �current-value�. De�ne λ = ertp.
Then H(t, x, u, p) = e−rt

[
f cv + pertg

]
which equals e−rtHcv(x, u, λ) where Hcv(x, u, λ) =

f cv(x, u)+λg(x, u) is called the current-value Hamiltonian. (There is literature where that
is just called �Hamiltonian� as well.) We have ṗ = d

dt
λe−rt = [λ̇ − rλ]e−rt which equals

−e−rt ∂Hcv

∂x
, so we get

λ̇− rλ = −∂H
cv

∂x

with the same transversality conditions for λ as for p. The optimal u∗ maximizes Hcv and
� whenever unique � will be given as a function ûcv(x, λ).

Example 1 revisited. With current-value formulation, we get

step 0: Current-value Hamiltonian

Hcv(x, u, λ) = k1x− 1
2
q11x

2 + (k2 − q12x)u− 1
2
q22u

2 +m1λx+m2λu

step 1: The optimal u∗ can be written as
k2 − q12x+m2λ

q22

step 2: We get the di�erential equation λ̇− rλ = q11x− k1 + q12u−m1λ to be evaluated
at optimum:

λ̇− rλ = q11x
∗ − k1 + q12

k2 − q12x∗ +m2λ

q22
−m1λ

Linear in (x∗, λ), and now the coe�cients are constant.

step 3: Inserting û in the di�erential equation for x∗, we �nd

ẋ∗ = m1x
∗ +m2

k2 − q12x∗ +m2λ

q22

Linear in (x∗, λ), and now the coe�cients are constant.

Because of the constant coe�cients, we can solve this system completely. Align the inte-
gration constants to x(t0) = x0 and the terminal/transversality conditions, and we have
solved the maximization problem.

Phase planes. Also �requires� a system without explicit t-dependence (�autonomous�),
so the current-value formulation is most helpful here too. See example given in class.
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