Seminar 17/4 Econ 4140.
Eric Navdal

4-05. First we solve the "inner" integral:

folmeydy = :L“J;leydy = m(e—l)

The we solve the "outer" integral:

folx(e—1>dx = (e—l)j::lrdx = (6_1)%

4-08. The integrand is zy’cos(2’y). Looks like something that
could be the result of a chain rule differentiation. Let us try

differentiating with respect to x.
%(sin(ﬁy)) = Cos($2y)2xy

This looks promising. Let's look at the double integral.
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To solve the last integral, use the formula f w' = ww — f u'v. Let u
= Y%y and let +'= sin(y). Then v = —cos(y), so
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7-04 (a)
We have the equations:
T=y—2 —1xy

j=r—y —ay

In order to find the equilibrium points we can either use our
heads or we can start calculating. First we note that z = y = 0 is

a solution. Then we see that z and y occur symmetrically in the
two equations. It therefore makes sense to look for solutions
where © = y and z = —y. The first of these leads to z = y = %.

We calculate the matrix

—2zr—y 11—z

A(:z:, y) 1 Y —2y—=x

We can then calculate that the eigenvalues of A(0, 0) are \; = 1
and N\, = —1. Since they have opposite sign, we have confirmed
that [0, 0] is a saddle point. With A(%%, %) we do not need to

calculate eigenvalues as tr(A(%, %)) = -3 and det((A(%, %)) =

2, so (Y%, %) is locally asymptotically stable.



y-X2-Xy
X-Y2-Xy

(b) A phase diagram looks like this:
X
y|

Clearly (0, 0) is a saddle point and (%, ') is locally stable.

(b) If 2=z + y then Z =1 + y so we can write the differentiable

equation for z as follows



z2=z+y— (;r:2 + 22y + -;;2)
=r+y— (..r: + y)z

Z— Z

— st = [t
S| itfae-

Inz —111(:1 — .:) =1+ 1'{0

exp Iln — } = K

(c)

We use the hint. If w = z— y, then w = 2 — ¢ which implies:
w:—(x—y)(1+a:+y> (1)

As luck would have it we have already a solution for z + .
Inserting this expression into the differential equation for w

gives:

The solution is straight forward to find:
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.—L'U = (1+ K
Ce™

e ('l + K](‘t)

Now we have expressions for x + y and z — y. We can use these

to get expressions for x and y. Indeed, we have that:

N K¢ i Ce™
& ii—=p—=———> and & — =1 =
1+ K¢ (1+ K¢

Solving these expressions for x and y yields

£K e e¢K —e'C
o(t) = ————1 y(t)=—1—*
26K, +2 26K, +2

We are looking for particular solutions where x(t) = y(t) for

some particular ¢. The easiest way to bring about that is to set

. = 0. To find the particular solutions going through the

given points, just fix the constant K. E.g:

K _
1L i K =2

s et ‘



7-05

(a) Finding solutions to 2= %2> —y=0and §y = 2z—y=01s

easy. (-2, 4), (0, 0) and (2, 4) all fit. We find that the Jacobian

1s given by:

6 —1
2 —1

It 1s straight forward to check that A(-2) = [ has

eigenvalues of different signs so (-2, —4) 1s a saddle point. Same
goes for A(2) = as A(2) = A(-2). Checking the eigenvalues of
A(0) requires complex numbers. But since tr(A(0)) = —1 and
det(A(0)) = 2, (x, y) = (0, 0) 1s locally asymptotically stable.

(In fact 1t 1s a spiral sink.)

(b) The phase diagram is drawn in two different versions below.



x'=(1/2)x° -y
y'=2x-y

-10

Figur 1. Here the blue lines indicate stable manifolds and green lines are unstable.



(c) We calculate the eigenvalues for A(2). They are:

A :%(5—@) and \ :%(5%@)
We only use \,. It follows that we can write 6z — y = X\,x, which

implies that y = y = %(7 + \/ﬁ)

8-01

Consider the variational problem

1
max / (2re* — 2zd — &%) dt, z(0)=0, z(1)=1

J U

(a) Write down the Euler equation for the problem.

(b) Find the solution of the problem, assuming it has one.

(a) We calculate:

i(Qxet —2x:t—x'2)—i i(2xe " 211 — % ) =0
ozx dt\| o0z
2¢”" —2x—i(—2x—2x):
dt
2 —20 422 +2%¥ =0
2" +25 =0
i=—e"

(b)
Solving the differential equation ¥ = —e™' yields z = —e¢' + Kt
+ C, where K and (' are arbitrary constants. Fixing these from
initial and endpoint conditions implies:

x(O):—l—I—C’ = (), x(l): — '+ K+0=1
It follows that C=1and K=¢'sox= ¢’ + e't + 1.



8-06

(a) Vi skal maksimere fﬁ
L

!

pxr” + %(r — I)Q }dt. The Euler

equation is given by:



a 5 ; 2| d| 8 2 : 2
a px —|—b%(:c—;r) J—I—E E px —l—b%(:c—;r:) ”:
Spes) — 2aq (.fb""(t)q— rm?(t}) B 2q (:J:”(t] : a&:’(t}) _
b ] b-
.{é—[aﬂ +b‘_p z(t) =0
q

This 18 straightforward. The characteristic equation 15 given by:

o
r—la®+22 =0
q
- ) - ; 2 bgp nt nt
I'he solution is clearly r, = £|a” + —| and z = Ae™ + Be™.

q

Of course, 1f r; = 0, the solution 15 even simpler.

(b) Inserting the numbers gives us the differential equation

# — 2 = 0, implying that r,, = =1. Thus we have that
z=Aée + Be™*

Letting #(0) = 0 and 2(1) = 1 gives the equations

B
A+B=0, Ae+=>=1
e



These are straighforward to solve and gives the solution:

9-03
We form the Hamiltonian H = z— > + (z + u). Clearly H is
concave in x and strictly concave in u. The maximum principle

yields the following conditions:

u="E
2
i=—1-p, pf2)=0
T=T+ B
2
Solving the differential equation for  yields:
b4p=—1
ne' = f—etdt
n=—1+Ke"

Using the transversality condition yields -1 + Ke? =0 — K =
¢’. Thus u = %(e* " — 1). In order to find the optimal z we solve
=z + %" - 1)

Solving this equations gives the equation:



i—x= Yy 1
:—f( e it

1

—t 22t —t
re B = — e +—e "+ K

4

T = —leH —|—l—|— Ke'
4 2

Then 2(0) = 0 implies that K = i(—Q + 62).

b)

Optimality conditions are the same except that we must pay

attention to the constraints on u. However, the differential

equation for p does not change so w(t) is still given by p(t) =
~ — 1. If we plot p(t)/2 we get something like this:
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Clearly, the constraint u < 1 is binding for low . We can

calculate that p(t)/2 > 1 implies that ¢t < t* = 2 — In3.

We now have to recalculate z(t) over two intervals [0, t*] and

[t*, 2]. The solution over the first interval is found by solving
r=z+u=2x+1, :1:(0):0

The solution is given by x(t) =¢' —1 . We calculate that

(2 — In3) = Exp(2)/3 — 1. Then we need to find z(t) over (t*,

2]. This we can do by solving the following differential equation:



2

t=x+%E "~ 1), z(2—1In3 £ 1
o( ), o )=

The solution to this equation is
1 eZ—t 962572
2 4 4




