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4-05. First we solve the "inner" integral: 
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The we solve the "outer" integral: 
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4-08. The integrand is xy2cos(x2y). Looks like something that 

could be the result of a chain rule differentiation. Let us try 

differentiating with respect to x.  
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This looks promising. Let's look at the double integral. 
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To solve the last integral, use the formula uv uv u v¢ = -ò ò . Let u 

= ½y and let v = sin(y). Then v = –cos(y), so ¢
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7-04 (a) 

We have the equations: 
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In order to find the equilibrium points we can either use our 

heads or we can start calculating. First we note that x = y = 0 is 

a solution. Then we see that x and y occur symmetrically in the 

two equations. It therefore makes sense to look for solutions 

where x = y and x = –y. The first of these leads to x = y = ½. 

We calculate the matrix 

 

   
We can then calculate that the eigenvalues of A(0, 0) are l1 = 1 

and l2 = –1. Since they have opposite sign, we have confirmed 

that [0, 0] is a saddle point. With A(½, ½) we do not need to 

calculate eigenvalues as tr(A(½, ½)) = –3 and det((A(½, ½)) = 

2, so (½, ½) is locally asymptotically stable. 

 



 
 

(b) A phase diagram looks like this: 

 

 
 

Clearly (0, 0) is a saddle point and (½, ½) is locally stable. 

 

(b) If z = x + y then z x  so we can write the differentiable 

equation for z as follows 

y= + 



 

  
 

  

(c) 

We use the hint. If w = x – y, then w x   which implies: y= - 

 ( )( )1w x y x= - - + + y   (1) 

As luck would have it we have already a solution for x + y. 

Inserting this expression into the differential equation for w 

gives:  

    

The solution is straight forward to find: 



 

   
 

Now we have expressions for x + y and x – y. We can use these 

to get expressions for x and y. Indeed, we have that:

  
Solving these expressions for x and y yields 

    
We are looking for particular solutions where x(t) = y(t) for 

some particular t. The easiest way to bring about that is to set 

C
1 = 0. To find the particular solutions going through the 

given points, just fix the constant K
1
. E.g: 

    



 

 
 

(b) The phase diagram is drawn in two different versions below. 



 

 

 
Figur 1. Here the blue lines indicate stable manifolds and green lines are unstable. 
 

 



 

 

 

(c) We calculate the eigenvalues for A(2). They are: 
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We only use l1. It follows that we can write 6x – y = l1x, which 

implies that y = ( )1
2

7 4y = + 1 .  

 

 8-01 

 
(a) We calculate: 
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(b)  

Solving the differential equation  yields x = –e–t + Kt 

+ C, where K and C are arbitrary constants. Fixing these from 

initial and endpoint conditions implies:  

tx e-= -

 ( ) ( )0 1 0, 1 tx C x e K-= - + = = - + + = 1C   

It follows that C = 1 and K = e–1 so x = –e–t + e–1t + 1.  



 

 

8-06 

 



 

 



 

 
 

 

9-03 

We form the Hamiltonian H = x – u² + (x + u). Clearly H is 

concave in x and strictly concave in u. The maximum principle 

yields the following conditions: 
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Solving the differential equation for � yields: 
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Using the transversality condition yields –1 + Ke–2 = 0  K = 

e2. Thus u = ½(e2–t – 1). In order to find the optimal x we solve  

   2–½ –( )tex x= +
Solving this equations gives  the equation: 
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Then x(0) = 0 implies that K = ( )21
2

4
e- + . 

 

b) 

Optimality conditions are the same except that we must pay 

attention to the constraints on u. However, the differential 

equation for μ does not change so μ(t) is still given by μ(t) =  

e2–t – 1. If we plot μ(t)/2 we get something like this: 
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Clearly, the constraint u £ 1 is binding for low t. We can 

calculate that p(t)/2 ³ 1 implies that t £ t* = 2 – ln3.  

We now have to recalculate x(t) over two intervals [0, t*] and 

[t*, 2]. The solution over the first interval is found by solving 

 ( )1, 0 0x x u x x= + = + =   

The solution is given by ( ) 1tx t e= -  . We calculate that 

x(2 – ln3) = Exp(2)/3 – 1. Then we need to find x(t) over (t*, 

2]. This we can do by solving the following differential equation: 
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The solution to this equation is  
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