ECON 4140, Seminar April 6th.

A
Find the antiderivative of $t \cos t$.

We use integration by parts. Let $t=v$ and let $\cos t=u^{\prime}$, which implies that $u=\sin t$. Then

$$
\begin{aligned}
& \int t \cos t d t=t \sin t-\int \sin t d t \\
& =t \sin t+\cos t
\end{aligned}
$$

B

Solve the differential equation $x^{\prime \prime}-4 x^{\prime}+5 x=0$

We form the characteristic equation $r^{2}-4 r-5=0$. This has the solutions $r=-1$ and $r=5$. Thus the solution is:

$$
x(t)=C_{1} e^{-r t}+C_{2} e^{5 t}
$$

Sometimes it is possible to verify quasiconcavity/quasiconvexity by checking the level curves directly etc.
a)

Let $f(x, y)=x+\left(x^{2}-y\right)^{1 / 2}$. A mechanical way of finding level curves is to solve $f(x, y)=C$ with respect to e.g. y. This gives y
$=2 c x-c^{2}$. Plotting this expression for $c=-1,1,2$ and 3 gives the following plot:

Here we immediately see that something is wrong. These lines can not be level curves. (Why?)
b) If we look at $f(x, y)$ again we see that it is only defined when $y \leq x^{2}$. But that means that $f(x, y)$ is not defined over a convex set, which means that the definition of quasiconcavity/convexity is not satisfied so it makes no sense to ask the question in the first place. Below is a drawing of what the level curves look like when that fact is taken into account.

Obviously we can ensure that quasi-concavity/convexity holds by removing the set of values $f(x, y)$ is defined over. If we insist that $(x, y) \in A=\{(x, y): x \in R, y \leq 0\}$ we have quasiconcavity/convexity over A.

6-12
a) We have the following, rather messy equation:

$$
\dot{p}(t)=\beta \int_{-\infty}^{t}[D(p(\tau))-S(p(\tau))] e^{-\alpha(t-\tau)} d \tau
$$

$D(p)=a-b p$ and $S(p)=-c+d p$. In order to derive a 2.
orders differential equation from an expression where you only have the first order derivative it makes sense to take the derivative. With the aid of Leibnitz' formula:

$$
\begin{aligned}
& \ddot{p}=\beta((a+c)-(b+d) p(t)) e^{-\alpha(t-t)} \\
& +\beta \int_{-\infty}^{t} \frac{d}{d t}\left(((a+c)-(b+d) p(\tau)) e^{-\alpha(t-\tau)}\right) d \tau \\
& \ddot{p}=\beta((a+c)-(b+d) p(t))-\alpha \beta \int_{-\infty}^{t}((a+c)-(b+d) p(\tau)) e^{-\alpha(t-\tau)} d \tau \\
& \ddot{p}=\beta((a+c)-(b+d) p(t))-\alpha \dot{p} \\
& \ddot{p}+\alpha \dot{p}+\beta(b+d) p(t)=\beta(a+c)
\end{aligned}
$$

b) Equilibrium implies $\ddot{p}=\dot{p}=0$ which implies that $p^{*}=$ $\underline{a+c ; b+d}$.
c)

Let us check the possibilities. If $1 / 4 \alpha^{2}-\beta(d+b)>0$, then the characteristic equation has two real roots given by

$$
r_{1}=-\frac{1}{2} \alpha+\sqrt{\frac{1}{4} \alpha^{2}-\beta(b+d)}, \quad r_{2}=-\frac{1}{2} \alpha-\sqrt{\frac{1}{4} \alpha^{2}-\beta(b+d)}
$$

r_{2} is clearly negative. r_{1} is also negative as long as $\beta(b+d)>0$. Thus $A \exp \left(r_{1} t\right)+B \exp \left(r_{2} t\right)$ both goes to zero as $t \rightarrow \infty$. The two other cases are easier to check. They will go to zero as long as $-1 / 2 \alpha<0$. Of course we can just sum this up in the observation that the equation $\ddot{x}+a \dot{x}+b=f(t)$ is stable as long as $a>0$ and $b>0$. Oscillations will only occur if $1 / 4 \alpha^{2}-\beta(d+$ b) <0.

6-15

a) First we write the problem as

$$
\ddot{x}+4 \dot{x}+13 x=\frac{1}{2} e^{2 t}
$$

Using formulas from the book we have that $1 / 4 a^{2}-b=4-13<$ 0 so the homogenous solution is on the form $x=e^{\alpha t}(A \times \cos (\beta t)$ $+B \times \sin (\beta t))$ where $\alpha=-1 / 2 a=-2$ and $\beta=\sqrt{b-1 / 4 a^{2}}=$ $\sqrt{13-\frac{1}{4} 4^{2}}=3$. Then we find the particular solution. The book tells us to try a solution of the form $u=A e^{2 t}$. This yields $u^{\prime}=$ $2 A e^{2 t}$ and $u^{\prime \prime}=4 A e^{2 t}$. Inserting into the equation yields

$$
\begin{aligned}
& 4 A e^{2 t}+8 A e^{2 t}+13 A e^{2 t}=\frac{1}{2} e^{2 t} \\
& A=\frac{1}{50}
\end{aligned}
$$

b) We now try to find a particular solution when

$$
\ddot{x}+4 \dot{x}+13 x=1 / 2 \sin (3 t)
$$

We try to fit a solution of the form $u=A \times \sin (3 t)+B \times \cos (3 t)$. This gives us $u^{\prime}=3 A \times \cos (3 t)-3 B \times \sin (3 t)$ and $u^{\prime \prime}=$ $-9 B \cos (3 t)-9 A \sin (3 t)$. Inserting this into the differential equation yields:

$$
4(3 A+B) \cos (3 t)+4(A-3 B) \sin (3 t)=1 / 2 \sin (3 t)
$$

This gives us the equations $12 A+4 B=0$ and $4 A-12 B=1 / 2$ with the solution $A=1 / 80$ and $B=-3 / 80$.

7-01.
We have the equations:

$$
\dot{x}=x+y+t, \quad \dot{y}=-x+2 y
$$

Taking derivatives of both yields:

$$
\ddot{x}=\dot{x}+\dot{y}+1, \quad \ddot{y}=-\dot{x}+2 \dot{y}
$$

We can now think of these equations as a system with 4 equations and 7 unknowns. We may solve for y, \dot{y} and \ddot{x} as functions of \dot{x}, x og t. In particular we are interested in finding \ddot{x} as a function of \dot{x}, x og t. We can write the answer as:

$$
\ddot{x}-3 \dot{x}+3 x=1-2 t
$$

The characteristic equation is $r^{2}-3 r+3=0$. This equation only has complex solutions. The homogenous equation therefore has the solution $x=e^{\alpha t}(A \times \cos (\beta t)+B \times \sin (\beta t)$ hvor $\alpha=-1 / 2 \times 3$ $=-3 / 2$ and $\beta=\sqrt{3-1 / 43^{2}}=\sqrt{3} / 2$. In order to find the particular solution we try a guess that $u=C t+D$. Then $u^{\prime}=$ C and $u^{\prime \prime}=0$. Inserting into the equation yields

$$
\begin{aligned}
& 0-3 C+3(C t+D)=1-2 t \\
& 3 C t=-2 t, 3 C+3 D=1
\end{aligned}
$$

implying $C=-2 / 3$ og $D=-1 / 3$. Therefore $x(t)$ is given by:

$$
x=\exp \left(\frac{3}{2} t\right)\left(A \cos \left(\frac{\sqrt{3}}{2} t\right)+B\left(\frac{\sqrt{3}}{2} t\right)\right)-\frac{2}{3} t-\frac{1}{3}
$$

We also need to find $y(t)$. We have that: $\dot{x}-x-t=y$. Taking the derivative of $x(t)$ yields:

$$
x^{\prime}(t)=\frac{1}{2} e^{3 t / 2}\left((3 A+\sqrt{3} B) \cos \left(\frac{\sqrt{3} t}{2}\right)+(3 B-\sqrt{3} A) \sin \left(\frac{\sqrt{3} t}{2}\right)\right)-\frac{2}{3}
$$

Inserting $x(t)$ and $x^{\prime}(t)$ yields, after an ungodly amount of algebra:

$$
y=\frac{1}{2} e^{3 t / 2}\left((A+\sqrt{3} B) \cos \left(\frac{\sqrt{3} t}{2}\right)+(B-\sqrt{3} A) \sin \left(\frac{\sqrt{3} t}{2}\right)\right)-\frac{1}{3}(t+1)
$$

7-02

a) We have the system:

$$
\begin{align*}
& \dot{x}=a x+2 y+\alpha \\
& \dot{y}=2 x+a y+\beta \tag{*}
\end{align*}
$$

This system may be solved in several ways, the easiest being to use eigenvalues. Here we will transform the system to a second order equation. We differentiate $\left(^{*}\right)$ and get:

$$
\begin{align*}
& \ddot{x}=a \dot{x}+2 \dot{y} \\
& \ddot{y}=2 \dot{x}+a \dot{y} \tag{**}
\end{align*}
$$

$(*)$ and $\left({ }^{* *}\right)$ are 4 equations and 6 variables. We can therefore solve for \ddot{x} as a function of \dot{x} and x. We then get

$$
\begin{equation*}
\ddot{x}-2 a \dot{x}-\left(4-a^{2}\right) x=2 \beta-a \alpha \tag{}
\end{equation*}
$$

The characteristic equation is $r^{2}-2 a-\left(4-a^{2}\right)=0$. This equation has real solutions for all values of a. They are given by $r_{1}=a+2$ and $a-2$. Thus the homogenous equation has the solution $x=A e^{(2+a) t}+B e^{(2-a) t}$. This solution to the homogenous equation is valid for all values of a. In order to find the particular solution we try a solution on the form $u=K$. It is easy to see that this implies that $u=(2 \beta-a \alpha) /\left(a^{2}-4\right)$. Thus the full solution for x is given by:

$$
x(t)=A e^{(a+2) t}+B e^{(a-2) t}+\frac{(2 \beta-a \alpha)}{a^{2}-4}
$$

We now proceed to find $y(t)$. The solution for $x(t)$ implies that:

$$
\dot{x}=x^{\prime}(t)=A(a+2) e^{(a+2) t}+B(a-2) e^{(a-2) t}
$$

Inserting into the equation for \dot{x} above gives:

$$
\begin{gathered}
\dot{x}=a x+2 y+\alpha \\
\Downarrow \\
a\left(A e^{(a+2) t}+B e^{(a-2) t}+\frac{(2 \beta-a \alpha)}{a^{2}-4}\right)+2 y(t)+\alpha \\
\Downarrow \\
y(t)=A e^{(a+2) t}+B e^{(a-2) t}+\frac{2 \alpha-a \beta}{a^{2}-4}
\end{gathered}
$$

These solutions are clearly only valid when $a \neq \pm 2$. We therefore have to look for other particular solutions in this case. If $a= \pm 2$, we can write $\left({ }^{* * *}\right)$ as:

$$
\ddot{x}-2 a \dot{x}=2 \beta-a \alpha
$$

By solving this equation as a first order differential equation and then integrating we get the solution:

$$
u=K_{2}+\frac{K_{1}}{2 a} e^{2 a t}+\frac{a \alpha-2 \beta}{2 a} t
$$

Here K_{1} and K_{2} are arbitrary constants. Now let $a=2$. Then the general solution is given by:

$$
x=A e^{4 t}+B+K_{2}+\frac{K_{1}}{4} e^{4 t}+\frac{\alpha-\beta}{2} t
$$

By writing $A+1 / 4 K_{1}=\Gamma_{1}$ and $B+K_{2}=\Gamma_{2}$, the general solution may be written:

$$
x=\Gamma_{2}+\Gamma_{2} e^{4 t}+\frac{\alpha-\beta}{2} t
$$

Here Γ_{1} and Γ_{2} are arbitrary constants. Finding y is now plain algebra and the answer is given.

Now let $a=-2$. Then the general solution is

$$
x=A+B e^{-4 t}+K_{2}-\frac{K}{4} e^{-4 t}+\frac{\alpha+\beta}{2} t
$$

Again we can rewrite by letting $B-1 / 4 K_{1}=\Gamma_{1}$ and $A+K_{2}=\Gamma_{2}$ resulting in

$$
x=\Gamma_{2}+\Gamma_{1} e^{-4 t}+\frac{\alpha-\beta}{2} t
$$

Again I leave the task of finding $y(t)$ to you.
b)

We already have the equilibrium points from above. If $x^{\prime}(t)=x^{\prime \prime}(t)=0$, then A and B must be chosen so that:

$$
x=\frac{(2 \beta-a \alpha)}{a^{2}-4}, y=\frac{2 \alpha-a \beta}{a^{2}-4}
$$

Alternatively we could just solve the system:

$$
\begin{aligned}
& \dot{x}=a x+2 y+\alpha=0 \\
& \dot{y}=2 x+a y+\beta=0
\end{aligned}
$$

Written in matrix form $\left(^{*}\right)$ may be written:

$$
\begin{aligned}
& {\left[\begin{array}{c}
\dot{x} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{ll}
a & 2 \\
2 & a
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{c}
\alpha \\
\beta
\end{array}\right]} \\
& =\mathbf{A}\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{c}
\alpha \\
\beta
\end{array}\right]
\end{aligned}
$$

This system is only stable if $\operatorname{tr}(\mathbf{A})<0$ and $\operatorname{det}(\mathbf{A})>0$. This requires $a<-2$. If $-2<a<2$, the steady state is a saddle point as A has eigenvalues with opposite signs.
d)

Draw the lines $-x+2 y-4 \geq 0 \rightarrow y \geq 1 / 2 x+2$ and $2 x-y-1 \geq 0$
$\rightarrow y \leq 2 x-1$. As $a=-1$, we know that any equlibrium point must be a saddle point. As I am the teacher I can use a computer to draw the actual diagram.

$$
\begin{aligned}
& x^{\prime}=a x+2 y+\text { alpha } \\
& y^{\prime}=2 x+a y+b e t a
\end{aligned}
$$

$$
\begin{array}{ll}
a=-1 & \text { alpha }=-4 \\
& \text { beta }=-1
\end{array}
$$

Classify the origin as equilibrium point for the system etc.

We have the differential equations:

$$
\dot{x}=1-e^{x-y}, \dot{y}=-y
$$

We further have that

$$
\mathbf{J}(x, y)=\left[\begin{array}{ll}
\frac{d \dot{x}}{d x} & \frac{d \dot{x}}{d y} \\
\frac{d \dot{y}}{d x} & \frac{d \dot{y}}{d y}
\end{array}\right]=\left[\begin{array}{cc}
e^{x-y} & -e^{x-y} \\
0 & -1
\end{array}\right]
$$

There is only one equilibrium point $(x, y)=(0,0)$. We know that locally around the equilibrium point the solution can be approximated by:

$$
\mathbf{J}(0,0)\left[\begin{array}{l}
x \tag{*}\\
y
\end{array}\right]=\left[\begin{array}{cc}
-1 & 1 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

The stability properties of the original system are locally the same as the stability properties of $\left({ }^{*}\right)$ around the equilibrium point. It is straight forward to calculate that $\operatorname{Tr}(\mathbf{J}(0,0))=-2<$ 0 and $\operatorname{det}(\mathbf{J}(0,0))=1>0$, so by Liapunovs's Theorem the system is locally stable.

It is straight forward to see that $\operatorname{Tr}(\mathbf{J}(x, y))<0$ and $\operatorname{det}(\mathbf{J}(x$, $y))>0$ for all (x, y), så by Olech's theorem the system is globally stable.

