
ECON 4140, Seminar April 6th. 
A 
Find the antiderivative of cost t .  
 
We use integration by parts. Let t = v and let cost = u’, which 
implies that u = sint. Then 
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B 
Solve the differential equation 4 5 0x x x      
 
We form the characteristic equation r2 – 4r – 5 = 0. This has 
the solutions r = –1 and r = 5. Thus the solution is: 
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Sometimes it is possible to verify quasiconcavity/quasiconvexity 
by checking the level curves directly etc. 
 
a) 
 
Let f(x, y) = x + (x2 – y)½. A mechanical way of finding level 
curves is to solve f(x, y) = C with respect to e.g. y. This gives y 



= 2cx – c2. Plotting this expression for c = –1, 1, 2 and 3 gives 
the following plot: 
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Here we immediately see that something is wrong. These lines 
can not be level curves. (Why?) 
 
b) If we look at f(x, y) again we see that it is only defined when 
y  x2. But that means that f(x, y) is not defined over a convex 
set, which means that the definition of quasi-
concavity/convexity is not satisfied so it makes no sense to ask 
the question in the first place. Below is a drawing of what the 
level curves look like when that fact is taken into account.  
 



Obviously we can ensure that quasi-concavity/convexity holds 
by removing the set of values f(x, y) is defined over. If we insist 
that (x, y)  A = {(x, y): x  R, y  0} we have quasi-
concavity/convexity over A.  
 

  
 
 
   6-12 
a) We have the following, rather messy equation: 

  
D(p) = a – bp and S(p) = –c + dp. In order to derive a 2. 
orders differential equation from an expression where you only 
have the first order derivative it makes sense to take the 
derivative. With the aid of Leibnitz' formula: 
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b) Equilibrium implies 0p p    which implies that p* = 

;a c b d  .  

c) 

Let us check the possibilities. If ¼² – (d + b) > 0, then the 
characteristic equation has two real roots given by 
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r2 is clearly negative. r1 is also negative as long as (b + d) > 0. 

Thus Aexp(r1t) + Bexp(r2t) both goes to zero as t → . The 
two other cases are easier to check. They will go to zero as long 

as –½ < 0. Of course we can just sum this up in the 
observation that the equation  x ax b f t     is stable as long 

as a > 0 and b > 0. Oscillations will only occur if ¼² – (d + 
b) < 0.  
 
6-15 
a) First we write the problem as  



 214 13
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tx x x e      

Using formulas from the book we have that ¼a² – b = 4 – 13 < 

0 so the homogenous solution is on the form x = et(Acos(t) 

+ Bsin(t)) where  = –½a = –2 and  = 2¼b a  = 
21

413 4 = 3. Then we find the particular solution. The book 

tells us to try a solution of the form u = Ae2t. This yields u' = 
2Ae2t and u'' = 4Ae2t. Inserting into the equation yields 
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b) We now try to find a particular solution when  
  1

24 13 sin 3x x x t      

We try to fit a solution of the form u = Asin(3t) + Bcos(3t). 
This gives us u' = 3Acos(3t) – 3Bsin(3t) and u'' = 

9 cos(3 ) 9 sin(3 )B t A t  . Inserting this into the differential 
equation yields: 
      1

24 3 cos(3 ) 4 3 sin(3 sin 3)A B t A B t t     

This gives us the equations 12A + 4B = 0 and 4A – 12B = ½ 
with the solution A = 1/80 and B = –3/80. 
 
 
7-01. 
We have the equations:  
 , 2x x y t y x y        

Taking derivatives of both yields: 



 1, 2x x y y x y            

We can now think of these equations as a system with 4 
equations and 7 unknowns. We may solve for y, y  and x as 
functions of x , x og t. In particular we are interested in finding 
x as a function of x , x og t. We can write the answer as: 

 3 3 1 2x x x t       
The characteristic equation is r² –3r + 3 = 0. This equation 
only has complex solutions. The homogenous equation therefore 

has the solution x = et(Acos(t) + Bsin(t) hvor  = –½3 

= –3/2 and  = 23 ¼3  = 3 / 2 . In order to find the 
particular solution we try a guess that u = Ct + D. Then u' = 
C and u'' = 0. Inserting into the equation yields 
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implying C = –2/3 og D = –1/3. Therefore x(t) is given by: 
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We also need to find y(t). We have that:x x t y   . Taking 
the derivative of x(t) yields: 
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 Inserting x(t) and  x t  yields, after an ungodly amount of 

algebra: 
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7-02 
a) We have the system: 
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x ax y
y x ay
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
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This system may be solved in several ways, the easiest being to 
use eigenvalues. Here we will transform the system to a second 
order equation. We differentiate (*) and get: 
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x ax y
y x ay
 
 

  
     (**) 

(*) and (**) are 4 equations and 6 variables. We can therefore 
solve for x as a function of x  and x. We then get 
  22 4 2x ax a x a         (***) 

The characteristic equation is r2 – 2a – (4 – a2) = 0. This 
equation has real solutions for all values of a. They are given by 
r1 = a + 2 and a – 2. Thus the homogenous equation has the 
solution x = Ae(2 + a)t + Be(2 – a)t. This solution to the homogenous 
equation is valid for all values of a. In order to find the 
particular solution we try a solution on the form u = K. It is 
easy to see that this implies that u =    22 4a a   . Thus 

the full solution for x is given by: 
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We now proceed to find y(t). The solution for x(t) implies that: 
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Inserting into the equation for x above gives: 
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These solutions are clearly only valid when a  2. We 
therefore have to look for other particular solutions in this case. 

If a = 2, we can write (***) as: 
 
 2 2x ax a       

By solving this equation as a first order differential equation 
and then integrating we get the solution: 

 
21

2
2

2 2
atK au K e t

a a
      

Here K1 and K2 are arbitrary constants. Now let a = 2. Then 
the general solution is given by: 

   
By writing A +  ¼K1 = 1 and B + K2 = 2, the general 
solution may be written: 
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Here 1 and 2 are arbitrary constants. Finding y is now plain 
algebra and the answer is given. 



Now let a = –2. Then the general solution is  
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Again we can rewrite by letting B – ¼K1 = 1 and A + K2 = 2 
resulting in 
 

   
Again I leave the task of finding y(t) to you. 
 
b)  
We already have the equilibrium points from above. If 

    0x t x t   , then A and B must be chosen so that: 
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Alternatively we could just solve the system: 
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Written in matrix form (*) may be written: 
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This system is only stable if tr(A) < 0 and det(A) > 0. This 

requires a < –2. If –2 < a < 2, the steady state is a saddle point 
as A has eigenvalues with opposite signs.  
 



d) 

 
computer to draw the actual diagram. 

 
 
  
 
Classify the origin as equilibrium point for the system etc. 
 
We have the differential equations: 



 1 ,x yx e y y       

 
We further have that 
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There is only one equilibrium point (x, y) = (0, 0). We know 
that locally around the equilibrium point the solution can be 
approximated by: 

(*)   1 1
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The stability properties of the original system are locally the 
same as the stability properties of (*) around the equilibrium 
point. It is straight forward to calculate that Tr(J(0, 0)) = –2 < 

0 and det(J(0, 0)) = 1 > 0, so by Liapunovs’s Theorem the 

system is locally stable.  
 
 
It is straight forward to see that Tr(J(x, y)) < 0 and det(J(x, 
y)) > 0 for all (x, y), så by Olech’s theorem the system is 
globally stable.  


