Seminar 9/2.

Positive definiteness requires that $\mathbf{x}'\mathbf{A}\mathbf{x} > 0$ and positive semidefiniteness requires $\mathbf{x}'\mathbf{B}\mathbf{x} \ge 0$ for all \mathbf{x} . Therefore

$$\mathbf{x'Ax + x'Bx} > 0$$
$$\mathbf{x'(Ax + Bx)} > 0$$
$$\mathbf{x'(Ax + Bx)} > 0$$
$$\mathbf{x'(A + B)x} > 0$$

The sum of \mathbf{A} and \mathbf{B} is therefore positive definite.

How about the product of a positive definite matrix and a positive semidefinite matrix? Let:

$$\mathbf{A} = \begin{bmatrix} a_1 & A \\ A & a_2 \end{bmatrix} \text{ and } \mathbf{B} = \begin{bmatrix} b_1 & B \\ B & b_2 \end{bmatrix}$$

In order for **A** to be positive definite, a_1 and $|\mathbf{A}|$ must be strictly positive. A can be negative as long as A^2 is less than a_1a_2 . If we now calculate **AB** we find that:

$$\mathbf{AB} = \begin{bmatrix} a_1b_1 + AB & a_1B + Ab_2 \\ Ab_1 + a_2B & AB + a_2b_2 \end{bmatrix}$$

Clearly AB is not symmetric and therefore not definite in any way. However the quadratic form $\mathbf{x}^{T}AB\mathbf{x}$ has an equivalent form with a matrix that is symmetric.

Compendium problem 1-13.

a) We have

$$(\mathbf{X} + \frac{1}{2}\mathbf{A}^{-1}\mathbf{B}')'\mathbf{A}(\mathbf{X} + \frac{1}{2}\mathbf{A}^{-1}\mathbf{B}') - \frac{1}{4}\mathbf{B}\mathbf{A}^{-1}\mathbf{B}' (\mathbf{X}' + (\frac{1}{2}\mathbf{A}^{-1}\mathbf{B}')')(\mathbf{A}\mathbf{X} + \frac{1}{2}\mathbf{B}') - \frac{1}{4}\mathbf{B}\mathbf{A}^{-1}\mathbf{B}' (\mathbf{X}' + (\frac{1}{2}\mathbf{B}(\mathbf{A}^{-1})'))(\mathbf{A}\mathbf{X} + \frac{1}{2}\mathbf{B}') - \frac{1}{4}\mathbf{B}\mathbf{A}^{-1}\mathbf{B}' \mathbf{X}'\mathbf{A}\mathbf{X} + \frac{1}{2}\mathbf{X}'\mathbf{B}' + (\frac{1}{2}\mathbf{B}(\mathbf{A}^{-1})')\mathbf{A}\mathbf{X} + (\frac{1}{2}\mathbf{B}(\mathbf{A}^{-1})')\frac{1}{2}\mathbf{B}' - \frac{1}{4}\mathbf{B}\mathbf{A}^{-1}\mathbf{B}' \mathbf{X}'\mathbf{A}\mathbf{X} + \frac{1}{2}\mathbf{X}'\mathbf{B}' + \frac{1}{2}\mathbf{B}\mathbf{X} + \frac{1}{4}\mathbf{B}\mathbf{A}^{-1}\mathbf{B}' - \frac{1}{4}\mathbf{B}\mathbf{A}^{-1}\mathbf{B}' \mathbf{X}'\mathbf{A}\mathbf{X} + \frac{1}{2}\mathbf{X}'\mathbf{B}' + \frac{1}{2}\mathbf{B}\mathbf{X} + \frac{1}{4}\mathbf{B}\mathbf{A}^{-1}\mathbf{B}' - \frac{1}{4}\mathbf{B}\mathbf{A}^{-1}\mathbf{B}' \mathbf{X}'\mathbf{A}\mathbf{X} + \mathbf{B}\mathbf{X}$$

b) We have

$$\frac{d}{d\mathbf{X}} (\mathbf{X}'\mathbf{A}\mathbf{X} + \mathbf{B}\mathbf{X}) = \mathbf{X}'\mathbf{A} + \mathbf{A}\mathbf{X} + \mathbf{B}$$
$$= \mathbf{A}\mathbf{X} + \mathbf{A}\mathbf{X} + \mathbf{B}$$
$$= 2\mathbf{A}\mathbf{X} + \mathbf{B} = \mathbf{0}$$
$$\bigcup$$
$$\mathbf{X} = -\frac{1}{2}\mathbf{A}^{-1}\mathbf{B}$$

That this is a minimum follows from **A** being positive definite.

Exam 2008 problem 1(c)

$$\mathbf{A} = \begin{bmatrix} 0 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

We have that:

$$D_1 = |0|$$

This implies that A is not positive definite. We have that:

$$D_2 = \det \begin{vmatrix} 0 & 2 \\ 2 & 3 \end{vmatrix} = -4$$

This is one of the principal subdeterminants, so A is not positive semidefinite. As $D_1 = 0$ we can rule out negative definiteness. For r = 1, the principal subdeterminants are all non-negative so $(-1)^1 \Delta_r = [0 -3 0]$ so we can also rule out negative semidefiniteness.

Alternatively: Note that \mathbf{A} is symmetric. Then we can use eigenvalues. It is straight forward to calculate that the eigenvalues for \mathbf{A} are given by - 1, 0 and 4. With eigenvalues of different signs we now that A is indefinite.

Now we add the constraint that

$$\mathbf{D} = \begin{bmatrix} 0 & 0 & 16 & 0 & 1 \\ 0 & 0 & 1 & 2 & 0 \\ 16 & 1 & 0 & 2 & 0 \\ 0 & 2 & 2 & 3 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

There are 3 variables and two constraints. We must therefore calculate the following determinant.

$$D_3 = \begin{vmatrix} 0 & 0 & 16 & 0 & 1 \\ 0 & 0 & 1 & 2 & 0 \\ 16 & 1 & 0 & 2 & 0 \\ 0 & 2 & 2 & 3 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{vmatrix} = -5$$

Fist we check if it is positive definite. We note that there are m = 2 constraints and calculate that $(-1)^m D_3 = -5$. Thus the constrained quadratic form is not positive definite. Then we calculate $(-1)^s D_3 = 5$ and the constrained quadratic form is negative definite.

Differentiation

We have that $g: \mathbb{R}^m \to \mathbb{R}$. We have that the Hessian is $\mathbf{H}(\mathbf{y})$ where the element in the *i*th row and the jth column is $g_{i,j}(\mathbf{y})$. We are asked to find the Hessian of $f(\mathbf{x}) = g(\mathbf{A}\mathbf{x})$. Don't think to hard about this stuff. Just use the chain rule. First we get the gradient.

$$\mathbf{h}(\mathbf{x}) = \nabla f(\mathbf{A}\mathbf{x}) = \left[\sum_{i=1}^{m} g'_i(\mathbf{A}\mathbf{x})a_{i,1}, \sum_{i=1}^{m} g'_i(\mathbf{A}\mathbf{x})a_{i,2}, \cdots, \sum_{i=1}^{m} g'_i(\mathbf{A}\mathbf{x})a_{i,n}\right] = \underbrace{\left[\sum_{i=1}^{m} g'_i(\mathbf{A}\mathbf{x})a_{i,1}, \sum_{i=1}^{m} g'_i(\mathbf{A}\mathbf{x})a_{i,2}, \cdots, \sum_{i=1}^{m} g'_i(\mathbf{A}\mathbf{x})a_{i,n}\right]}_{1 \times m} = \underbrace{\mathbf{A}}_{n \times m}^{\mathbf{T}} \underbrace{\nabla g(\mathbf{A}\mathbf{x})}_{m \times 1}^{\mathbf{T}}$$

Then take the derivative of this expression.

$$\underbrace{\mathbf{h}'(x)}_{n \times n} = \begin{vmatrix} \frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial x_2} & \cdots & \frac{\partial h_1}{\partial x_n} \\ \frac{\partial h_2}{\partial x_1} & \frac{\partial h_2}{\partial x_2} & \cdots & \frac{\partial h_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial h_n}{\partial x_1} & \frac{\partial h_n}{\partial x_2} & \cdots & \frac{\partial h_n}{\partial x_n} \end{vmatrix} = \mathbf{A}^{\mathbf{T}} \underbrace{\begin{bmatrix} g_{11}''(\mathbf{A}\mathbf{x}) & g_{12}''(\mathbf{A}\mathbf{x}) & \cdots & g_{1m}''(\mathbf{A}\mathbf{x}) \\ g_{21}''(\mathbf{A}\mathbf{x}) & g_{22}''(\mathbf{A}\mathbf{x}) & \cdots & g_{2m}''(\mathbf{A}\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ g_{m1}''(\mathbf{A}\mathbf{x}) & g_{m2}''(\mathbf{A}\mathbf{x}) & \cdots & g_{12}''(\mathbf{A}\mathbf{x}) \\ \end{bmatrix}}_{m \times m} \mathbf{A}$$

Problem 2-07

Let $f(x, y) = (\ln x)^a (\ln y)^b$, defined for x > 1, y > 1. Assume that a > 0, b > 0 and a + b < 1. Compute the Hessian matrix **H** of f and show that f is strictly concave.

We have that

$$\begin{aligned} f_{x,x}^{\prime\prime}\left(x,y\right) &= \frac{-(1-a)a\left(\ln x\right)^{a-2}\left(\ln y\right)^{b}}{x^{2}} - \frac{a\left(\ln x\right)^{a-1}\left(\ln\left(y\right)\right)^{b}}{x^{2}} \\ f_{y,y}^{\prime\prime}\left(x,y\right) &= \frac{-(1-b)b\left(\ln x\right)^{a}\left(\ln y\right)^{b-2}}{y^{2}} - \frac{b\left(\ln x\right)^{a}\left(\ln y\right)^{b-1}}{y^{2}} \\ f_{x,y}^{\prime\prime}\left(x,y\right) &= \frac{ab\left(\ln x\right)^{a-1}\left(\ln y\right)^{b-1}}{xy} \end{aligned}$$

 $f_{x,x}^{\prime\prime}$ is clearly negative. The Hessian is easy to form after having calculated these expressions. Noting that $f_{x,x}^{\prime\prime}(x,y)$ and $f_{y,y}^{\prime\prime}(x,y)$ has common factors simplify the calculations. The determinant of the Hessian is

$$\begin{split} \left| \mathbf{H} \right| &= \frac{ab \left(\ln x \right)^{2a-2} \left(\ln y \right)^{2b-2} \left(1-a+\ln x \right) \left(1-b+\ln y \right)}{x^2 y^2} - \frac{a^2 b^2 \left(\ln x \right)^{2a-2} \left(\ln y \right)^{2b-2}}{x^2 y^2} \\ &= \frac{ab}{x^2 y^2} \left(\ln x \right)^{2a-2} \left(\ln y \right)^{2b-2} \left(\left(1-a+\ln x \right) \left(1-b+\ln y \right) - ab \right) \\ &= \frac{ab}{x^2 y^2} \left(\ln x \right)^{2a-2} \left(\ln y \right)^{2b-2} \underbrace{\left(1-\left(a+b \right) + \left(1-a \right) \ln y + \left(1-b \right) \ln x + \ln \left(x+y \right) \right)}_{\text{positive by assumption}} > 0 \end{split}$$