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Positive definiteness requires that x’Ax > 0 and positive 

semidefiniteness requires x’Bx  0 for all x. Therefore 
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The sum of A and B is therefore positive definite.  

 
How about the product of a positive definite matrix and a 
positive semidefinite matrix? Let: 
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 In order for A to be positive definite, a1 and |A| must be 

strictly positive. A can be negative as long as A2 is less than 
a1a2. If we now calculate AB we find that: 
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Clearly AB is not symmetric and therefore not definite in any 

way. However the quadratic form xTABx has an equivalent form 

with a matrix that is symmetric. 
 
Compendium problem 1-13. 

a) We have  
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b) We have  
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That this is a minimum follows from A being positive definite. 

 

 
 
Exam 2008 problem 1(c)  
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We have that: 
 1 0D    
This implies that A is not positive definite. We have that: 

 2

0 2
det 4

2 3
D      

This is one of the principal subdeterminants, so A is not positive 
semidefinite. As D1 = 0 we can rule out negative definiteness. For r = 1, 



the principal subdeterminants are all non-negative so (–1)1r = [0 -3 0] 
so we can also rule out negative semidefiniteness. 
 
Alternatively: Note that A is symmetric. Then we can use eigenvalues. It 

is straight forward to calculate that the eigenvalues for A are given by -

1, 0 and 4. With eigenvalues of different signs we now that A is 
indefinite.   
 
Now we add the constraint that  
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There are 3 variables and two constraints. We must therefore calculate 
the following determinant.  
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Fist we check if it is positive definite. We note that there are m = 2 
constraints and calculate that (–1)m D3 = -5. Thus the constrained 
quadratic form is not positive definite. Then we calculate (–1)3 D3 = 5 
and the constrained quadratic form is negative definite. 

 
 
 



Differentiation 

We have that : mg   . We have that the Hessian is H(y) 

where the element in the ith row and the jth column is gi,j(y). 

We are asked to find the Hessian of f(x) = g(Ax). Don't think 

to hard about this stuff. Just use the chain rule. First we get 
the gradient. 
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Then take the derivative of this expression. 
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We have that 
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,x xf   is clearly negative. The Hessian is easy to form after having 

calculated these expressions. Noting that  , ,x xf x y  and  , ,y yf x y has common 

factors simplify the calculations. The determinant of the Hessian is 
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