Seminar 9/2.

Positive definiteness requires that $\mathbf{x}^{\prime} \mathbf{A x}>0$ and positive semidefiniteness requires $\mathbf{x}^{\prime} \mathbf{B x} \geq 0$ for all \mathbf{x}. Therefore

$$
\begin{aligned}
x^{\prime} \mathbf{A x}+\mathbf{x}^{\prime} \mathbf{B x} & >0 \\
\mathrm{x}^{\prime}(\mathbf{A x}+\mathbf{B x}) & >0 \\
\mathbf{x}^{\prime}(\mathbf{A}+\mathbf{B}) \mathbf{x} & >0
\end{aligned}
$$

The sum of \mathbf{A} and \mathbf{B} is therefore positive definite.

How about the product of a positive definite matrix and a positive semidefinite matrix? Let:

$$
\mathbf{A}=\left[\begin{array}{cc}
a_{1} & A \\
A & a_{2}
\end{array}\right] \text { and } \mathbf{B}=\left[\begin{array}{ll}
b_{1} & B \\
B & b_{2}
\end{array}\right]
$$

In order for \mathbf{A} to be positive definite, a_{1} and $|\mathbf{A}|$ must be strictly positive. A can be negative as long as A^{2} is less than $a_{1} a_{2}$. If we now calculate $\mathbf{A B}$ we find that:

$$
\mathbf{A B}=\left[\begin{array}{ll}
a_{1} b_{1}+A B & a_{1} B+A b_{2} \\
A b_{1}+a_{2} B & A B+a_{2} b_{2}
\end{array}\right]
$$

Clearly $\mathbf{A B}$ is not symmetric and therefore not definite in any way. However the quadratic form $\mathbf{x}^{\mathrm{T}} \mathbf{A B x}$ has an equivalent form with a matrix that is symmetric.

Compendium problem 1-13.
a) We have

$$
\begin{aligned}
& \left(\mathbf{X}+\frac{1}{2} \mathbf{A}^{-1} \mathbf{B}^{\prime}\right)^{\prime} \mathbf{A}\left(\mathbf{X}+\frac{1}{2} \mathbf{A}^{-1} \mathbf{B}^{\prime}\right)-\frac{1}{4} \mathbf{B} \mathbf{A}^{-1} \mathbf{B}^{\prime} \\
& \left(\mathbf{X}^{\prime}+\left(\frac{1}{2} \mathbf{A}^{-1} \mathbf{B}^{\prime}\right)^{\prime}\right)\left(\mathbf{A X}+\frac{1}{2} \mathbf{B}^{\prime}\right)-\frac{1}{4} \mathbf{B} \mathbf{A}^{-1} \mathbf{B}^{\prime} \\
& \left(\mathbf{X}^{\prime}+\left(\frac{1}{2} \mathbf{B}\left(\mathbf{A}^{-1}\right)^{\prime}\right)\right)\left(\mathbf{A X}+\frac{1}{2} \mathbf{B}^{\prime}\right)-\frac{1}{4} \mathbf{B} \mathbf{A}^{-1} \mathbf{B}^{\prime} \\
& \mathbf{X}^{\prime} \mathbf{A X}+\frac{1}{2} \mathbf{X}^{\prime} \mathbf{B}^{\prime}+\left(\frac{1}{2} \mathbf{B}\left(\mathbf{A}^{-1}\right)^{\prime}\right) \mathbf{A} \mathbf{X}+\left(\frac{1}{2} \mathbf{B}\left(\mathbf{A}^{-1}\right)^{\prime}\right) \frac{1}{2} \mathbf{B}^{\prime}-\frac{1}{4} \mathbf{B} \mathbf{A}^{-1} \mathbf{B}^{\prime} \\
& \mathbf{X}^{\prime} \mathbf{A X}+\frac{1}{2} \mathbf{X}^{\prime} \mathbf{B}^{\prime}+\frac{1}{2} \mathbf{B X}+\frac{1}{4} \mathbf{B} \mathbf{A}^{-1} \mathbf{B}^{\prime}-\frac{1}{4} \mathbf{B} \mathbf{A}^{-1} \mathbf{B}^{\prime} \\
& \mathbf{X}^{\prime} \mathbf{A X}+\mathbf{B X}
\end{aligned}
$$

b) We have

$$
\begin{aligned}
\frac{d}{d \mathbf{X}}\left(\mathbf{X}^{\prime} \mathbf{A X}+\mathbf{B X}\right) & =\mathbf{X}^{\prime} \mathbf{A}+\mathbf{A} \mathbf{X}+\mathbf{B} \\
& =\mathbf{A} \mathbf{X}+\mathbf{A X}+\mathbf{B} \\
& =2 \mathbf{A} \mathbf{X}+\mathbf{B}=\mathbf{0} \\
& \Downarrow \\
\mathbf{X} & =-\frac{1}{2} \mathbf{A}^{-1} \mathbf{B}
\end{aligned}
$$

That this is a minimum follows from \mathbf{A} being positive definite.

Exam 2008 problem 1(c)

$$
\mathbf{A}=\left[\begin{array}{lll}
0 & 2 & 0 \\
2 & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

We have that:

$$
D_{1}=|0|
$$

This implies that A is not positive definite. We have that:

$$
D_{2}=\operatorname{det}\left|\begin{array}{ll}
0 & 2 \\
2 & 3
\end{array}\right|=-4
$$

This is one of the principal subdeterminants, so A is not positive semidefinite. As $D_{1}=0$ we can rule out negative definiteness. For $r=1$,
the principal subdeterminants are all non-negative so $(-1)^{1} \Delta_{\mathrm{r}}=\left[\begin{array}{lll}0 & -3 & 0\end{array}\right]$ so we can also rule out negative semidefiniteness.

Alternatively: Note that \mathbf{A} is symmetric. Then we can use eigenvalues. It is straight forward to calculate that the eigenvalues for \mathbf{A} are given by 1,0 and 4 . With eigenvalues of different signs we now that A is indefinite.

Now we add the constraint that

$$
\mathbf{D}=\left[\begin{array}{ccccc}
0 & 0 & 16 & 0 & 1 \\
0 & 0 & 1 & 2 & 0 \\
16 & 1 & 0 & 2 & 0 \\
0 & 2 & 2 & 3 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

There are 3 variables and two constraints. We must therefore calculate the following determinant.

$$
D_{3}=\left|\begin{array}{ccccc}
0 & 0 & 16 & 0 & 1 \\
0 & 0 & 1 & 2 & 0 \\
16 & 1 & 0 & 2 & 0 \\
0 & 2 & 2 & 3 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right|=-5
$$

Fist we check if it is positive definite. We note that there are $m=2$ constraints and calculate that $(-1)^{m} D_{3}=-5$. Thus the constrained quadratic form is not positive definite. Then we calculate $(-1)^{3} D_{3}=5$ and the constrained quadratic form is negative definite.

Differentiation

We have that $g: \mathbb{R}^{m} \rightarrow \mathbb{R}$. We have that the Hessian is $\mathbf{H}(\mathbf{y})$ where the element in the i th row and the jth column is $g_{i, j}(\mathbf{y})$. We are asked to find the Hessian of $f(\mathbf{x})=g(\mathbf{A x})$. Don't think to hard about this stuff. Just use the chain rule. First we get the gradient.

$$
\begin{aligned}
\mathbf{h}(\mathbf{x}) & =\nabla f(\mathbf{A x})=\left[\sum_{i=1}^{m} g_{i}^{\prime}(\mathbf{A x}) a_{i, 1}, \sum_{i=1}^{m} g_{i}^{\prime}(\mathbf{A x}) a_{i, 2}, \cdots, \sum_{i=1}^{m} g_{i}^{\prime}(\mathbf{A x}) a_{i, n}\right]=\underbrace{[\underbrace{\nabla g(\mathbf{A x})}_{1 \times n} \underbrace{\mathbf{A}}_{m \times n}]}_{1 \times n} \\
& =\underbrace{\mathbf{A}^{\mathrm{T}}}_{n \times m} \underbrace{\nabla g(\mathbf{A x})^{\mathbf{T}}}_{m \times 1}
\end{aligned}
$$

Then take the derivative of this expression.

$$
\begin{aligned}
& \underbrace{\mathbf{h}^{\prime}(x)}_{n \times n}=\left[\begin{array}{cccc}
\frac{\partial h_{1}}{\partial x_{1}} & \frac{\partial h_{1}}{\partial x_{2}} & \cdots & \frac{\partial h_{1}}{\partial x_{n}} \\
\frac{\partial h_{2}}{\partial x_{1}} & \frac{\partial h_{2}}{\partial x_{2}} & \cdots & \frac{\partial h_{2}}{\partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial h_{n}}{\partial x_{1}} & \frac{\partial h_{n}}{\partial x_{2}} & \cdots & \frac{\partial h_{n}}{\partial x_{n}}
\end{array}\right]=\mathbf{A}^{\mathrm{T}}\left[\begin{array}{cccc}
{\left[\begin{array}{ccc}
g_{11}^{\prime \prime}(\mathbf{A x}) & g_{12}^{\prime \prime}(\mathbf{A x}) & \cdots \\
g_{21}^{\prime \prime}(\mathbf{A x}) \\
\vdots & (\mathbf{A x}) & g_{22}^{\prime \prime}(\mathbf{A x}) \\
\vdots & g_{2 m}^{\prime \prime}(\mathbf{A x}) \\
\vdots & \ddots & \vdots \\
g_{m 1}^{\prime \prime}(\mathbf{A x}) & g_{m 2}^{\prime \prime}(\mathbf{A x}) & \cdots
\end{array} g_{12}^{\prime \prime}(\mathbf{A x})\right.}
\end{array}\right] \mathbf{A} \\
& =\mathbf{A}_{m \times m}^{\mathrm{T}} \mathbf{H}(\mathbf{A x}) \mathbf{A}
\end{aligned}
$$

Problem 2-07

Let $f(x, y)=(\ln x)^{a}(\ln y)^{b}$, defined for $x>1, y>1$. Assume that $a>0, b>0$ and $a+b<1$. Compute the Hessian matrix \mathbf{H} of f and show that f is strictly concave.

We have that

$$
\begin{aligned}
f_{x, x}^{\prime \prime}(x, y) & =\frac{-(1-a) a(\ln x)^{a-2}(\ln y)^{b}}{x^{2}}-\frac{a(\ln x)^{a-1}(\ln (y))^{b}}{x^{2}} \\
f_{y, y}^{\prime \prime}(x, y) & =\frac{-(1-b) b(\ln x)^{a}(\ln y)^{b-2}}{y^{2}}-\frac{b(\ln x)^{a}(\ln y)^{b-1}}{y^{2}} \\
f_{x, y}^{\prime \prime}(x, y) & =\frac{a b(\ln x)^{a-1}(\ln y)^{b-1}}{x y}
\end{aligned}
$$

$f_{x, x}^{\prime \prime}$ is clearly negative. The Hessian is easy to form after having calculated these expressions. Noting that $f_{x, x}^{\prime \prime}(x, y)$ and $f_{y, y}^{\prime \prime}(x, y)$ has common factors simplify the calculations. The determinant of the Hessian is

$$
\begin{aligned}
|\mathbf{H}| & =\frac{a b(\ln x)^{2 a-2}(\ln y)^{2 b-2}(1-a+\ln x)(1-b+\ln y)}{x^{2} y^{2}}-\frac{a^{2} b^{2}(\ln x)^{2 a-2}(\ln y)^{2 b-2}}{x^{2} y^{2}} \\
& =\frac{a b}{x^{2} y^{2}}(\ln x)^{2 a-2}(\ln y)^{2 b-2}((1-a+\ln x)(1-b+\ln y)-a b) \\
& =\frac{a b}{x^{2} y^{2}}(\ln x)^{2 a-2}(\ln y)^{2 b-2} \underbrace{(1-(a+b)+(1-a) \ln y+(1-b) \ln x+\ln (x+y))}_{\text {positive by assumption }}>0
\end{aligned}
$$

