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happens when a ³ b²/c. If this holds concavity/convexity 

depends on the sign of a and c. sgn(a) = sgn(c) = 1, implies 

convexity. sgn(a) = sgn(c) = –1 implies concavity. sgn(a) = 
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sgn(c) = 0 implies both. sgn(a) ¹ sgn(b) implies neither. (Note: 

Both  and  must be checked as the exercise asks about 

concavity/convexity and not strict concavity/convexity. )   
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 c)This corresponds to a = –9, b = 1, c = 1, d = 3 and r = 0. 

Inserting yields: 

   9 3x x- = t

The homogenous equation has the characteristic equation r² – 9 

= 0 with the solution r =  3. Also, if we try a particular 

solution u = Ct, we can determine that C = –1/3. so the 

general solution is x = Ae3t + Be–3t – t/3. x(0) = x(1) = 0 

implies that: 
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Solving this yields: 
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First we set x  = u Î . The we have the problem: 
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The Hamiltonian is given by:  

 ( )2 2 29 2 3H x xu u t u= - + - + + pu   

Note that H is concave in (x, u). This leads us to the following 

optimality conditions.  
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We differentiate this system and get 
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We don't really need the last equation. Solving these four (or 

actually three) equations for  yields x



  9 3x x- = t

This should not be a big surprise. The same as what we got 

when we solved the calculus of variations problem. Obviously 

this equation has the same general solution. x = Ae3t + Be–3t – 

t/3. However we now have the condition that x(1) is free. Thus 

we need a condition to fix the constants A and B. This 

condition is that 
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Evaluating this expression is a bugger. It becomes 

  3 34 8 3e A Be-- + + = 0

Together with x(0) = A + B = 0 we can fix A and B. They are 

given by: 
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We now have to check what happens if we impose the condition 

x(1) ³ 2. Here it pays to stop and think. If the previous 

solution gives a solution where x(1) > 2, then we have already 

solved the problem. It turns out that x(1) is now 0.411117. 

Thus we must work some more. However, we can use the 

conditions: 
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Solving these gives: 
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(d) Having previously calculated that there are three real and 

distinct eigenvalues l1 = 4, l2  = –1 and l3 = 0. With 

corresponding eigenvectors  
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It follows straight from formulas in the book that: 

 ( ) 4t t-
3 31 1 2 2

x t C e C e C= + +v vv   

We only need to look at x(t). Clearly C1 = C3 = 0 for the 

system to approach the origin. If this holds, then x1(t) = –2C2e
-t 

and x2(t) = C2e
-t so x1(t)/x2(t) = –2.  
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Let H = b(t)lnu + p(rx – u). Then the Maximum Principle 

yields:  
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The differential equation for p gives that p = Ke–rt. This means 

that the condition that u maximizes the Hamiltonian may be 

written 
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Inserting for into the differential equation for x implies that we 

must solve: 

   

( )

( )

( )

rt

rt rt rt

rt

rt rt

b t
x rx

Ke
b t

xe rxe e
Ke
b t

xe rxe
K

-

- -
-

- -

- = -

- = -

- = -







-   

We now calculate the indeterminate integral on both sides of 

the equation: 
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We have two constants K and C to be determined. We can fix 

C from the condition x(0) = x0. This gives 
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 K will be fixed by the transversality condition. If the endpoint 

condition is binding so that x(T) = 0, we fix K in the following 

manner.  

 ( ) ( ) ( ) ( )
( )

0 0
0

rT rT
B T B T

x T e x e K
K x

= - + =  =   

Inserting K into the solution above, x(t) is given by: 
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(a)  

Calculating ( )d
dt

x x p K= = =   x  leads us to solve the following 

equation: 

   0x Kx- =

The characteristic equation is r2 – K = 0, which has the 

solution rt = – K  and r2 = K  . Thus the general solution is  
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b)  We now look for a particular solution. Using the hint in the 

book we try a solution of the form Let. Then 



 

1

t

t t

x Kx Ke

Le KLe Ke

K
L

K

- =


- =


=
-



t   

Thus  
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p(t) can then be calculated from ( )p x t Q¢= -   

 

Quick and dirty 

(a) i) simple. ii) Yes. Concave in x and u is enough for 

sufficiency. 



(b) Simple 

(c) Calculate –H(T)´1/10. 


