Seminar 20/4. Econ 4140. Eric Nævdal

9-05

Problem 9-05

Consider the variational problem

$$
\begin{equation*}
\max \int_{0}^{T}\left(a x^{2}+2 b x \dot{x}+c \dot{x}^{2}+d t^{2} \dot{x}\right) e^{-r t} d t, \quad x(0)=x_{0}, \quad x(T)=x_{T} \tag{*}
\end{equation*}
$$

(a) For what values of the constants a, b, c, d, and r is $\left(a x^{2}+2 b x y+c y^{2}+d t^{2} y\right) e^{-r t}$ concave with respect to (x, y) ?
(b) Find the Euler equation associated with (*).
(c) Solve the problem

$$
\begin{equation*}
\max \int_{0}^{1}\left(-9 x^{2}+2 x \dot{x}-\dot{x}^{2}+3 t^{2} \dot{x}\right) d t, \quad x(0)=0, \quad x(1)=0 \tag{**}
\end{equation*}
$$

(You can use the result in (b).)
(d) Transform the problem (**) in (c) into a control problem and find the optimal solution when the terminal condition is changed from $x(1)=0$ to
(i) x (1) free,
(ii) $x(1) \geq 2$.
a) Define $F(x, y)=\left(a x^{2}+2 b x y+c y^{2}+d t^{2} y\right) e^{-r t}$. We have that $F_{x x}^{\prime \prime}=2 a e^{-r t}, F_{y y}^{\prime \prime}=2 c$ and $F_{x x}^{\prime \prime} F_{y y}^{\prime \prime}-F_{x y}^{\prime \prime 2}=4 a c e^{-2 r t}-4 b^{2} e^{-2 r t}$. If F is to be either concave or convex, then $F_{x x}^{\prime \prime} F_{y y}^{\prime \prime}-F_{x y}^{\prime \prime} \geq 0$. This happens when $a \geq b^{2} / c$. If this holds concavity/convexity depends on the sign of a and $c \cdot \operatorname{sgn}(a)=\operatorname{sgn}(c)=1$, implies convexity. $\operatorname{sgn}(a)=\operatorname{sgn}(c)=-1$ implies concavity. $\operatorname{sgn}(a)=$
$\operatorname{sgn}(c)=0$ implies both. $\operatorname{sgn}(a) \neq \operatorname{sgn}(b)$ implies neither. (Note: Both $F_{x x}^{\prime \prime}$ and $F_{y y}^{\prime \prime}$ must be checked as the exercise asks about concavity/convexity and not strict concavity/convexity.)
b) Calculating $F_{x}^{\prime}(x, \dot{x})-\frac{d}{d t}\left(F_{\dot{x}}^{\prime}(x, \dot{x})\right)=0$ yields:

$$
\begin{gathered}
F_{x}^{\prime}(x, \dot{x})-\frac{d}{d t}\left(F_{\dot{x}}^{\prime}(x, \dot{x})\right)=0 \\
\Downarrow \\
\left(2 a x(t)+2 b x^{\prime}(t)\right) e^{-r t}-\frac{d}{d t}\left(\left(2 b x(t)+2 c x^{\prime}(t)+d t^{2}\right) e^{-r t}\right)=0 \\
\Downarrow \\
\left(2 a x(t)+2 b x^{\prime}(t)\right) e^{-r t}+e^{-r t} r\left(d t^{2}+2 b x(t)+2 c x^{\prime}(t)\right)-e^{-r t}\left(2 d t+2 b x^{\prime}(t)+2 c x^{\prime \prime}(t)\right)=0 \\
\Downarrow \\
d t(r t-2)+2(a+b r) x(t)+2 c r x^{\prime}(t)-2 c x^{\prime \prime}(t)=0 \\
\Downarrow \\
x^{\prime \prime}(t)-r x^{\prime}(t)-\frac{(a+b r)}{2 c} x(t)=\frac{(d r t-2) t}{2 c}
\end{gathered}
$$

c) This corresponds to $a=-9, b=1, c=1, d=3$ and $r=0$.

Inserting yields:

$$
\ddot{x}-9 x=3 t
$$

The homogenous equation has the characteristic equation $r^{2}-9$ $=0$ with the solution $r= \pm 3$. Also, if we try a particular solution $u=C t$, we can determine that $C=-1 / 3$. so the general solution is $x=A e^{3 t}+B e^{-3 t}-t / 3 . x(0)=x(1)=0$ implies that:

$$
\begin{aligned}
& A+B=0 \\
& A e^{3}+B e^{-3}-\frac{1}{3}=0
\end{aligned}
$$

Solving this yields:

$$
A=\frac{1}{3\left(e^{3}-e^{-3}\right)}, B=\frac{-1}{3\left(e^{3}-e^{-3}\right)}
$$

d)

First we set $\dot{x}=u \in \mathbb{R}$. The we have the problem:

$$
\max _{u} \int_{0}^{1}\left(-9 x^{2}+2 x u-u^{2}+3 t^{2} u\right) d t \text { s.t }: \dot{x}=u
$$

The Hamiltonian is given by:

$$
H=\left(-9 x^{2}+2 x u-u^{2}+3 t^{2} u\right)+p u
$$

Note that H is concave in (x, u). This leads us to the following optimality conditions.

$$
\begin{aligned}
& u=\dot{x}=\frac{1}{2}\left(2 x+3 t^{2}+p\right) \\
& \dot{p}=18 x-2 u
\end{aligned}
$$

We differentiate this system and get

$$
\ddot{x}=\frac{1}{2}(6 t+\dot{p}+2 \dot{x}), \ddot{p}=-6 t-\dot{p}+16 \dot{x}
$$

We don't really need the last equation. Solving these four (or actually three) equations for \ddot{x} yields

$$
\ddot{x}-9 x=3 t
$$

This should not be a big surprise. The same as what we got when we solved the calculus of variations problem. Obviously this equation has the same general solution. $x=A e^{3 t}+B e^{-3 t}-$ $t / 3$. However we now have the condition that $x(1)$ is free. Thus we need a condition to fix the constants A and B. This condition is that

$$
\left(\frac{\partial F}{\partial \dot{x}}\right)_{t=1}=-2 x^{\prime}(t)+3+2 x(t)=0
$$

Evaluating this expression is a bugger. It becomes

$$
-4 e^{3} A+8 B e^{-3}+3=0
$$

Together with $x(0)=A+B=0$ we can fix A and B. They are given by:

$$
A=\frac{3 e^{3}}{4\left(2+e^{6}\right)}, B=-\frac{3 e^{3}}{4\left(2+e^{6}\right)}
$$

We now have to check what happens if we impose the condition $x(1) \geq 2$. Here it pays to stop and think. If the previous solution gives a solution where $x(1)>2$, then we have already solved the problem. It turns out that $x(1)$ is now 0.411117 . Thus we must work some more. However, we can use the conditions:

$$
\begin{aligned}
& x(0)=A+B=0 \\
& x(1)=A e^{3}+B e^{-3}-\frac{1}{3}=2
\end{aligned}
$$

Solving these gives:

$$
A=\frac{-7 e^{3}}{3\left(1-e^{6}\right)}, \quad B=\frac{7 e^{3}}{3\left(1-e^{6}\right)}
$$

Exam 2008 Exercise 1d)

let $\mathbf{A}=\mathbf{C}_{0}=\left(\begin{array}{lll}0 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 0\end{array}\right)$
(d) Having previously calculated that there are three real and distinct eigenvalues $\lambda_{1}=4, \lambda_{2}=-1$ and $\lambda_{3}=0$. With corresponding eigenvectors

$$
\mathbf{v}_{1}=\left(\begin{array}{r}
1 \\
-2 \\
0
\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right), \mathbf{v}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

It follows straight from formulas in the book that:

$$
x(t)=C_{1} e^{4 t} \mathbf{v}_{1}+C_{2} e^{-t} \mathbf{v}_{2}+C_{3} \mathbf{v}_{3}
$$

We only need to look at $x(t)$. Clearly $C_{1}=C_{3}=0$ for the system to approach the origin. If this holds, then $x_{1}(t)=-2 C_{2} e^{-t}$ and $x_{2}(t)=C_{2} e^{-t}$ so $x_{1}(t) / x_{2}(t)=-2$.

Exam 2011

Problem 4 Let b be a given continuous function which is strictly positive for all t, and define $B(t)$ as $B(t)=\int_{0}^{t} b(s) d s$. Consider the optimal control problem

$$
\max \quad \int_{0}^{T} b(t) \ln u(t) d t \quad \text { where } \quad \dot{x}=r x-u, \quad x(0)=x_{0}, \quad x(T) \geq 0
$$

where r, x_{0} and T are positive constants, and u is allowed to take any positive value.
(a) Show that the pair $\left(x^{*}, u^{*}\right)$ defined by

$$
\begin{aligned}
u^{*}(t) & =x_{0} e^{r t} \frac{b(t)}{B(T)} \\
x^{*}(t) & =x_{0} e^{r t}\left(1-\frac{B(t)}{B(T)}\right)
\end{aligned}
$$

satisfies all the necessary conditions from the maximum principle.
(b) Show that $\left(x^{*}, u^{*}\right)$ solves the problem.

Let $H=b(t) \ln u+p(r x-u)$. Then the Maximum Principle

 yields:$$
\begin{aligned}
& \frac{b(t)}{u(t)}-p(t)=0 \\
& \dot{p}=-r p \\
& p(T) \geq 0(=0 \text { if } x(T)>0)
\end{aligned}
$$

The differential equation for p gives that $p=K e^{-r t}$. This means that the condition that u maximizes the Hamiltonian may be written

$$
u(t)=\frac{b(t)}{K e^{-r t}}
$$

Inserting for into the differential equation for x implies that we must solve:

$$
\begin{aligned}
& \dot{x}-r x=-\frac{b(t)}{K e^{-r t}} \\
& \dot{x} e^{-r t}-r x e^{-r t}=-\frac{b(t)}{K e^{-r t}} e^{-r t} \\
& \dot{x} e^{-r t}-r x e^{-r t}=-\frac{b(t)}{K}
\end{aligned}
$$

We now calculate the indeterminate integral on both sides of the equation:

$$
\begin{aligned}
& \int\left(\dot{x} e^{-r t}-r x e^{-r t}\right) d t=\int-\frac{b(t)}{K} d t \\
& x e^{-r t}=-\frac{B(t)}{K}+C \\
& x=-\frac{B(t)}{K} e^{r t}+C e^{r t}
\end{aligned}
$$

We have two constants K and C to be determined. We can fix C from the condition $x(0)=x_{0}$. This gives

$$
x_{0}=-\frac{B(0)}{K}+C \Rightarrow C=x_{0}
$$

We then have

$$
x=-\frac{B(t)}{K} e^{r t}+x_{0} e^{r t}
$$

K will be fixed by the transversality condition. If the endpoint condition is binding so that $x(T)=0$, we fix K in the following manner.

$$
x(T)=-\frac{B(T)}{K} e^{r T}+x(0) e^{r T}=0 \Rightarrow K=\frac{B(T)}{x(0)}
$$

Inserting K into the solution above, $x(t)$ is given by:

$$
x(t)=x(0) e^{-r t}-\frac{B(t)}{B(T) / x(0)} e^{r t}=x(0) e^{-r t}\left(1-\frac{B(t)}{B(T)}\right)
$$

Problem 3 Let $0<K<Q<1$ be constants and let G be a given function. Consider the differential equation system

$$
\begin{align*}
\dot{x}(t) & =p(t)+Q \\
\dot{p}(t) & =K x(t)-G(t) \tag{D}
\end{align*}
$$

(a) Deduce a second-order differential equation for x, and find the general solution of this equation when $G \equiv 0$. (Hint: For which γ will $x(t)=e^{\gamma t}$ be a particular solution?)
(b) Find the general solution of (D) for the case when $G(t)=K e^{t}$.
(a)

Calculating $\frac{d}{d t}(\dot{x})=\ddot{x}=\dot{p}=K x$ leads us to solve the following equation:

$$
\ddot{x}-K x=0
$$

The characteristic equation is $r^{2}-K=0$, which has the solution $r_{t}=-\sqrt{K}$ and $r_{2}=\sqrt{K}$. Thus the general solution is

$$
x=C_{1} e^{-\sqrt{K} t}+C_{2} e^{\sqrt{K} t}
$$

b) We now look for a particular solution. Using the hint in the book we try a solution of the form $L e^{t}$. Then

$$
\begin{aligned}
& \ddot{x}-K x=K e^{t} \\
& \downarrow \\
& L e^{t}-K L e^{t}=K e^{t} \\
& \downarrow \\
& L=\frac{K}{1-K}
\end{aligned}
$$

Thus

$$
x(t)=C_{1} e^{-\sqrt{K} t}+C_{2} e^{\sqrt{K} t}+\frac{K}{1-K} e^{t}
$$

$p(t)$ can then be calculated from $p=x^{\prime}(t)-Q$

Problem 4 Let $0<K<Q<1$ be constants, and consider the optimal control problem

$$
\max _{u(t) \in \mathbf{R}} \int_{0}^{11}\left\{-\frac{K}{2} \cdot\left[x(t)-e^{t}\right]^{2}-\frac{1}{2}[u(t)]^{2}\right\} d t, \quad \dot{x}=u+Q, \quad x(0)=x_{0}, \quad x(11) \text { free. }
$$

(a) i) State the conditions from the maximum principle.
ii) Are these conditions also sufficient?
(b) Show that in optimum, x and the adjoint (costate) p must satisfy the differential equation system (D) in problem 3, with $G(t)=K e^{t}$.
(c) Suppose that for some set of parameters the optimal solution ends at $x(11)=11 e^{11}$. Approximately how much would the optimal value change if the final time were reduced from 11 to 10.9 ?

Quick and dirty

(a) i) simple. ii) Yes. Concave in x and u is enough for sufficiency.
(b) Simple
(c) Calculate $-H(T) \times 1 / 10$.

