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We form the Hamiltonian H = u²  – x + mu. Clearly H is 

strictly convex in u and concave in x. As H is convex in u, the u 

that maximises the Hamiltonian is a corner solution, i.e. either 

u(t) = 0 or u(t) = 1. We start by calculating the adjoint 

variable: 
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Thus μ(t) = t – 2. We must now choose the optimal u. For 

arbitrary x and t we have that Hu=1 = 1 – x + (t – 2)´1 and Hu=0 

= –x.  Thus choosing u = 1 is optimal if Hu=1 > Hu=0. This 

happens if t > 1. If t < 1, it is optimal to let u = 0. At t = 1, 

we are indifferent. Thus x'(t) = 0 and x(t) = 0 for t Î [0, 1). 



x'(t) = 1 and x(t) = t – 1 for t Î (1, 2].  

 

The solution satisfies Arrow's sufficiency condition, so we know 

we have the optimal solution. 

 

Induction. 

Induction 1) Define f(n) =  . Clearly f(1) = 1 and f(2) = 

2´(2 +1)/3 = 3. If the hypothesis holds, then f(n + 1) = f(n ) 

+ n + 1 = n(n + 1)/2 + n + 1 = (n + 1)(n + 2)/2 which can 

be verified by straightforward algebra.  
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Induction 2). First we note that 91 – 1 = 8. Then we calculate 
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Fin the general solution to xt+1 + xt+1 – 6xt = 5t + t.  

The characteristic equation is r² + r – 6 = 0. Straight forward 

to find the solution r = 2 and r = –3. The homogenous equation 

thus has the solution: 

   2 – 3t t

t
x A B=

To find the particular solution we try a solution on the form u 

= C5t + Dt + F. This gives that we can write xt+1 + xt+1 – 6xt = 

5t + t as 
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This implies that 
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(a) The characteristic equation has the solution r = 2 and r = 

½. So the solution to the homogenous equation is A(½)t + B2t. 

We try to find a particular solution on the form D3t. Then we 

have that: 
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Solving this last expression with respect to D gives D = 4 so the 



general solution is given by:  
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In order to determine the constants A and B to find the 

solution going through x0 = 0 and x1 = 2, we calculate: 
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(b) 

A minor detail first. The equation depends on t +1, t and t – 1. 

Ignoring this may be unimportant. It certainly is for 

homogenous equations and many non-homogenous equations as 

well. To be on the safe side I use a transformation t = t – 1. 

Then we can write: 
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The characteristic equation is given by: 
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This equation has the solution m1 = a and m2 = a–1. In the 

process it may be helpful to note that 1 – 2a² + a4 = (a² – 1)². 

Thus the solution to the homogenous equation is then Aat + 

Ba-t. To find a particular solution, try with a solution on the 

form ut = Dbt+1. Then the equation may be written: 
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(a) Clearly JT(x) = x . Then JT–1(x) = ( )
0,1

max 2
u
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2 x x+  = 5x  as u = 4/5. This because 
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Then JT–2(x) = ( )
0,1

max 2 5
u

xu x ux
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+ - . Solving 
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Inserting gives JT–2(x) = 3 x  .  

 

b) This one seems horrible, but is a quite straightforward use of 

recursive math. We already know that for T – 1 the premise 

holds that JT–1(x) = K x . Here K = 5 . Now if the premise 

holds, then 
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Calculating the optimal value of u gives: 
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 Inserting gives: 
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