Econ 4140- Seminar 18/4-2017.

Problem 9-12

Find the only possible solution to the control problem

$$
\max \int_{0}^{2}\left(u^{2}-x\right) d t \quad \text { s.t. } \quad \dot{x}=u, \quad x(0)=0, x(2) \text { is free, } 0 \leq u \leq 1
$$

that is, find the only admissible pair $(x(t), u(t))$ that satisfies the conditions in the maximum principle.

We form the Hamiltonian $H=u^{2}-x+\mu u$. Clearly H is strictly convex in u and concave in x. As H is convex in u, the u that maximises the Hamiltonian is a corner solution, i.e. either $u(t)=0$ or $u(t)=1$. We start by calculating the adjoint variable:

$$
\begin{aligned}
& \dot{\mu}=1 \rightarrow \mu=K+t \\
& x(2) \text { free } \rightarrow \mu(2)=0 \rightarrow K=-2
\end{aligned}
$$

Thus $\mu(t)=t-2$. We must now choose the optimal u. For arbitrary x and t we have that $H_{v=1}=1-x+(t-2) \times 1$ and $H_{u=0}$ $=-x$. Thus choosing $u=1$ is optimal if $H_{u=1}>H_{u=0}$. This happens if $t>1$. If $t<1$, it is optimal to let $u=0$. At $t=1$, we are indifferent. Thus $x^{\prime}(t)=0$ and $x(t)=0$ for $t \in[0,1)$.
$x^{\prime}(t)=1$ and $x(t)=t-1$ for $t \in(1,2]$.

The solution satisfies Arrow's sufficiency condition, so we know we have the optimal solution.

Induction.

Induction 1) Define $f(n)=\sum_{i=1}^{n} i$. Clearly $f(1)=1$ and $f(2)=$
$2 \times(2+1) / 3=3$. If the hypothesis holds, then $f(n+1)=f(n)$
$+n+1=n(n+1) / 2+n+1=(n+1)(n+2) / 2$ which can be verified by straightforward algebra.

Induction 2). First we note that $9^{1}-1=8$. Then we calculate

$$
\begin{aligned}
& 9^{n+1}=9^{n}(8+1) \\
& 9^{n+1}-1=\underbrace{9^{n} 8}_{\text {divisible by } 8}+\underbrace{9^{n}-1}_{\begin{array}{l}
\text { divisisle by } 8 \text { under } \\
\text { the hypothesis }
\end{array}}
\end{aligned}
$$

10-03.

Fin the general solution to $x_{t+1}+x_{t+1}-6 x_{t}=5^{t}+t$.

The characteristic equation is $r^{2}+r-6=0$. Straight forward to find the solution $r=2$ and $r=-3$. The homogenous equation thus has the solution:

$$
x_{t}=A 2^{t}-B 3^{t}
$$

To find the particular solution we try a solution on the form u $=C 5^{t}+D t+F$. This gives that we can write $x_{t+1}+x_{t+1}-6 x_{t}=$ $5^{t}+t$ as

$$
\begin{aligned}
& C 5^{t+2}+D(t+2)+F+C 5^{t+1}+D(t+1)+F-6\left(C 5^{t}+D t+F\right)=5^{t}+t \\
& 25 C 5^{t}+D t+2 D+F+5 C 5^{t}+D t+D+F-6 C 5^{t}-6 D t+6 F=5^{t}+t \\
& (25 C+5 C-6 C) 5^{t}+(D+D-6 D) t+(2 D+F+D+F-6 F)=5^{t}+t
\end{aligned}
$$

This implies that

$$
\begin{aligned}
& 25 C+5 C-6 C=1 \rightarrow C=\frac{1}{24} \\
& D+D-6 D=1 \rightarrow D=-\frac{1}{4} \\
& 2 D+F+D+F-6 F=0 \rightarrow 3 D-4 F=0 \rightarrow F=-\frac{3}{16}
\end{aligned}
$$

10-05

(a) Solve the difference equation

$$
x_{t+2}-\frac{5}{2} x_{t+1}+x_{t}=10 \cdot 3^{t}, \quad t=0,1,2, \ldots
$$

Determine the solution that gives $x_{0}=0, x_{1}=2$.
(b) The following difference equation appears in dynamic consumer theory:

$$
-\alpha x_{t+1}+\left(1+\alpha^{2}\right) x_{t}-\alpha x_{t-1}=K \beta^{t}, \quad t=1,2, \ldots
$$

Here α, K and β are constants, α and β positive. Determine the general solution of the equation when $\alpha \neq 1, \beta \neq \alpha$ and $\beta \neq 1 / \alpha$.
(a) The characteristic equation has the solution $r=2$ and $r=$
$1 / 2$. So the solution to the homogenous equation is $A(1 / 2)^{t}+B 2^{t}$. We try to find a particular solution on the form $D 3^{t}$. Then we have that:

$$
D 3^{t+2}-\frac{5}{2} D 3^{t+1}+D 3^{t}=10 \times 3^{t}
$$

Solving this last expression with respect to D gives $D=4$ so the
general solution is given by:

$$
x_{t}=A\left(\frac{1}{2}\right)^{t}+B 2^{t}+4 \times 3^{t}
$$

In order to determine the constants A and B to find the solution going through $x_{0}=0$ and $x_{1}=2$, we calculate:

$$
\begin{aligned}
& x_{0}=A\left(\frac{1}{2}\right)^{0}+B 2^{0}+4 \times 3^{0}=0 \\
& x_{t}=A\left(\frac{1}{2}\right)^{1}+B 2^{1}+4 \times 3^{1}=2
\end{aligned}
$$

(b)

A minor detail first. The equation depends on $t+1, t$ and $t-1$. Ignoring this may be unimportant. It certainly is for homogenous equations and many non-homogenous equations as well. To be on the safe side I use a transformation $\tau=t-1$. Then we can write:

$$
-\alpha x_{\tau+2}+\left(1+\alpha^{2}\right) x_{\tau+1}-\alpha x_{\tau}=K \beta^{\tau+1}
$$

The characteristic equation is given by:

$$
m^{2}-\frac{1+\alpha^{2}}{\alpha} m+1=0
$$

This equation has the solution $m_{1}=\alpha$ and $m_{2}=\alpha^{-1}$. In the process it may be helpful to note that $1-2 \alpha^{2}+\alpha^{4}=\left(\alpha^{2}-1\right)^{2}$. Thus the solution to the homogenous equation is then $A \alpha^{\tau}+$ $B \alpha^{-\tau}$. To find a particular solution, try with a solution on the form $u_{\tau}=D \beta^{\tau+1}$. Then the equation may be written:

$$
\begin{gathered}
-\alpha D \beta^{\tau+2}+\left(1+\alpha^{2}\right) D \beta^{\tau+1}-\alpha D \beta^{\tau}=K \beta^{\tau+1} \\
\downarrow \\
D=\frac{-\beta K}{\alpha+\alpha \beta^{2}-\left(1+\alpha^{2}\right) \beta}
\end{gathered}
$$

11-04

Consider the dynamic programming problem

$$
\max \sum_{t=0}^{T-1} 2 \sqrt{u_{t} x_{t}}+\sqrt{x_{T}} \quad \text { subject to } \quad x_{t+1}=x_{t}-u_{t} x_{t}, \quad u_{t} \in[0,1]
$$

(Interpretation: My wealth today is $x_{0} \geq 0$. Every day, i.e. for every $t<T$, I spend $u_{t} x_{t}$ dollars on consumption. On day T I spend the remaining wealth, x_{T}.
(a) Find $J_{T-1}(x)$ and $J_{T-2}(x)$ and the corresponding controls $u_{T-1}^{*}(x)$ and $u_{T-2}^{*}(x)$.
(b) Show that $J_{t}^{*}(x)$ can be written in the form $J_{t}^{*}(x)=k_{t} \sqrt{x}$, and find a differenceequation for k_{t}.
(a) Clearly $J_{T}(x)=\sqrt{x}$. Then $J_{T-1}(x)=\max _{u \in[0,1]}(2 \sqrt{x u}+\sqrt{x-u x})=$
$2 \sqrt{\frac{4}{5} x}+\sqrt{\frac{1}{5} x}=\sqrt{5 x}$ as $u=4 / 5$. This because

$$
\begin{aligned}
\frac{\partial}{\partial u}(2 \sqrt{x u}+\sqrt{x-u x}) & =\frac{x}{\sqrt{u x}}-\frac{x}{2 \sqrt{x-u x}}=0 \\
& \downarrow \\
u & =\frac{4}{5}
\end{aligned}
$$

Then $J_{T-2}(x)=\max _{u \in[0,1]}(2 \sqrt{x u}+\sqrt{5} \sqrt{x-u x})$. Solving

$$
\begin{aligned}
\frac{\partial}{\partial u}(2 \sqrt{x u}+\sqrt{5} \sqrt{x-u x}) & =\frac{x}{\sqrt{u x}}-\frac{\sqrt{5} x}{2 \sqrt{x-u x}}=0 \\
& \downarrow \\
u & =\frac{4}{9}
\end{aligned}
$$

Inserting gives $J_{T-2}(x)=3 \sqrt{x}$.
b) This one seems horrible, but is a quite straightforward use of recursive math. We already know that for $T-1$ the premise holds that $J_{T-1}(x)=K \sqrt{x}$. Here $K=\sqrt{5}$. Now if the premise holds, then

$$
J_{t}(x)=\max _{u \in[0,1]}\left(2 \sqrt{x u}+k_{t+1} \sqrt{x-u x}\right)
$$

Calculating the optimal value of u gives:

$$
\begin{gathered}
\frac{\partial}{\partial u}\left(2 \sqrt{x u}+k_{t+1} \sqrt{x-u x}\right)=\frac{x}{\sqrt{u x}}-\frac{k_{t+1} x}{2 \sqrt{x-u x}}=0 \\
\downarrow \\
u=\frac{4}{4+k_{t+1}}
\end{gathered}
$$

Inserting gives:

$$
\begin{aligned}
& J_{t}(x)=2 \sqrt{x \frac{4}{4+k_{t+1}}}+k_{t+1} \sqrt{x-\frac{4}{4+k_{t+1}} x} \\
& =\frac{4}{\sqrt{4+k_{t+1}}} \sqrt{x}+k_{t+1} \sqrt{\frac{k_{t+1}}{4+k_{t+1}}} \sqrt{x} \\
& =\left(\frac{4}{\sqrt{4+k_{t+1}}}+k_{t+1} \sqrt{\frac{k_{t+1}}{4+k_{t+1}}}\right) \sqrt{x}
\end{aligned}
$$

