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a) The easy way that requires you think before you calculate: 

Let f = a – b, g = b  – c and h = a – c. Then clearly f + g = a 

– b + b – c = a – c = h, so the vectors are linearly dependent. 

A more complicated way is to use the definition of linear 

independency at note that if f, g and h are linearly independent 

then we can find numbers x, y and z all unequal to zero such 

that x(a – b) + y(b – c) + z(a – c) = 0. We can rewrite the last 

equality as: 

 ( ) ( ) ( ) 0x z y x y z+ + - - + =a b c  

If the premise is true we can write this in matrix form as: 
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for some vector [ x y z] ¹ [ 0 0 0]. If this is the case then it must 

hold that: 
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1 1 0

0 1 1
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This determinant is easily shown to be  1 +(–1) = 0 so we can 

find such numbers. E.g. will [ x y z ] = [ 2.5 2.5 –2.5] do the 

trick.  

 

b)  Strictly speaking we know already that the vectors a – b, b 

– c and a – c are linearly dependent. To whit: 
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   The last set of equations can be written: 
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As the determinant of the 3x3 matrix has already been shown 

to be zero, this system has no solution or infinitely many 

solutions. We check the last possibility by finding the reduced 

row echelon form. This is easily found to be: 
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which clearly is inconsistent. 
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We create the equation 
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We then proceed to calculate what values of l that makes the 

determinant |A – lI3| = 0.This determinant is given by: 
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Thus eigenvalues are given by: l1 = 2a, l2 = 1 + 1 a-  and 

l3 = 1 – 1 a- . 

  Let a = 1. Then the eigenvalues are : l1 = 2, l2 = 1  l3 = 1. 

For l1 we can write  
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The last equation implies the following equations: 

   
1 2 2 3

0, 2 0x x x x+ = - + =

Clearly we can choose one of the variables freely. If x1 = t, then 

x2 = –t and x3 = 2t. Thus t´[ 1, –1, 2] is an eigenvector. Now 

examine l2 = l3 = 1.  
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This equation can be written 

   
1 2 3 1 2 3

0, 0, 0x x x x x x= + = + + =



This system clearly has a solution where x1 = 0 and x2 = –x3. 

Thus the eigenvector is s´[ 0, –1, 1].  

Now let a = –3. We have that  
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The determinant is given by: 
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 Then the eigenvalues are  –6, 3 and –1. For l =  –6, we have 

that: 
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These equations have the solution x = r´[ 3 1 –2].   

For l =  3, we have that: 
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These equations have the solution x = r´[ 0 1 1].    

For l =  –1, we have that: 
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These equations have the solution x = r´[ 0 -3 1]. 
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(a) As the top row has the most zeros we expand along that 

row and get: 



 ( ) ( )2 2

2

2 3 0 2

2 0 1 2

1 0 3 2 1 0

6 3 6 4 4

t

t t

D t t t

t

t t t t t t t

t t
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= - + - + +

= -

 

   Clearly if t = 1 or 0, we have that |Dt| = zero so in this case 

the rank is less than 4. We now need to check if rank is 3 or less 

when t is 1 or 0 . If t  = 1 we remove the first row and column 

and examine the determinant  

 

2 3

2 0

1 0 3

t t

t- = 9

0

 

t = 1 implies that rank(Dt) = 3. To check the rank when t = 0, 

we remove the first row and the third column. This gives the 

matrix 

 

0 2 3

1 2

0 1 3
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The determinant of this matrix is 3 – 6 = -3, so the rank is 3 

also when t = 0.  

(b)  Straightforward manipulation yields: 
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X C A A BA

X C BA
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(a) The formula for the inverse of a diagonal matrix is one those 

things you should now. Here is a proof. A much easier proof 

would be to use gaussian row operations. This proof uses one 

definition of the inverse: A-1 = det(A)-1´ adj(A). In this case is 

given by 



 

0 0 0 0

0 0 0 0
0 0

0 0 0 0
0 0

0 0 0 0
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b b

c c
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Thus 
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(b) It follows directly from the definition of orthogonality.  

 

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3
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If bi and bj are orthogonal then bi⋅bj = 0. Of course, any vector 

with non-zero elements can not be orthogonal with itself. 

 

(c)  We have that: 



 

( ) 11 1

1 1

' '

'
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(d) Orthogonality can be proven by direct calculation. Direct 

calculation shows that 

  
3

' 81= =P P I A

We then have that A-1 = 
1

81
I3. From above we have that 

1 1 1
81

'- -= =P A P 'P . As P is symmetric we can write the last 

bit as 81–1P. 

 

Is it so that an eigenvalue for A must be an eigenvalue for the 

transpose A'? (No symmetry assumption made.) 

Remember (or just think) that the determinants of a matrix 

and its transpose are equal. Then it must hold that: 

 ( ) ( ) ( )det det det
æ ö÷ç- = - = -÷÷çè ø

T TA I A I Al l Il   (1) 



Let A be symmetric. Show that the value of the problems 

min/max x'Ax subject to x'x = 1, is, respectively, the smallest 

and largest eigenvalue. 

 

Form the Lagrangian 

 ( ) ( ), ' 'L = - -x x Ax x xm m 1   

Taking the derivative of the Lagrangian with respect to x gives: 

 

( )' '

2 2

+ = m +
ß
= m

Ax x A x x

Ax x

  

Clearly this implies that the value of x that solves the 

max/min-problem must be an eigenvector and μ must be an 

eigenvalue. But in that case we can write: 

   ' ' '
i i

= m = m = mx Ax x x x x
i

   Clearly the largest eigenvalue gives the highest value and the 

smallest eigenvalue gives the smallest value. As A is symmetric 



we know that the eigenvalues are real. (Mathematicians need to 

prove existence. We can wave our hands and mutter something 

about the extreme value theorem.) 

 

Let A be negative definite, let p be an integer and M be the 

power Ap of A. Show that if p is odd and positive, then M is 

negative definite def.  

First start out by recalling that if Q(x) = x'Bx one can always 

find a symmetric matrix A such that x'Bx = x'Ax for all x ¹ 0. 

Thus B must have the same definiteness properties as A and we 

may as well work with symmetric matrices.  Recall that if a 

matrix A is symmetric, A-1 = (A-1)'.  

First we check xA3x. Let us use the transformation y0 = Ax. 

Then x =  A-1y0 and x' = yo'A
-1. We can then write x'A3x = 

y0'A
-1AAA A-1y0 = y0'Ay0 which is negative for all y0 if x'Ax > 

0 for all x ¹ 0. If we then do the transformation y1  = Ay0, we 



can repeat the argument for  p = 5, 7, ... and it should be clear 

that we can do so for all odd, positive p. 

 

Decide if the same thing holds if p is even and positive.  

Here we just need to come up with a counter example. Let x be 

one dimensional and let A = -1. A is clearly negative definite. 

Clearly x'Apx is positive when p is even so the same thing does 

not necessarily hold for even p.  

 

What about negative odd powers? (That is, odd powers of the 

inverse of A - by the way, is it obvious that the inverse exists?) 

If p is an integer and less than zero, inverses are defined as 

( )1
p

p -=A A . We know that A–1 exist because definiteness 

requires full rank. And therefore A|p| exist also for all finite p. 

The problem here is to show that if A is negative definite, then 



A–1 is also negative definite. If we know this, we can use 

arguments from above. For instance we can do as follows. Let y 

= Ax. Then 

 

 

1(Multiply by ' )

(Matrices are symmetric så ' ' ' ' )

-

= =

-1 -1

-1

y'A y = y'A Ax y A

= x'AA Ax y x A x A

= x'Ax < 0

 Clearly if A is negative definite, then A–1 is also negative 

definite. 

 

Exam 2009  

 

The matrix associated with the quadratic form is: 



 

1 1

1 1

1 1 1

a

a
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Q   

In order for Q to be positive definit, all leading principal minors 

of Q must be positive. In particular must |Q| it self be strictly 

positive. Calculating |Q| gives –a2 + 2a –1 £ 0 for all a, so 

positive definiteness can be ruled out. 

 

 

If Q is positive semidefinite, then all principal minors must be 

non-negative. We already know that |Q| it self is never positive. 

Therefore, for |Q| to be non-negative it must be zero, which 

only happens if a = 1. But if a = 1, then all principal minors 

are either 1 or 0, so then Q is positive semidefinite.  

 



  

The characteristic equations for Q when a = 1 is 

 ( )2

1 1 1

1 1 1 3

1 1 1

- l
- l = l - l

- l
  

Thus Q in this case has an eigenvalue 3 and an eigenvalue 0 

with multiplicity 2. 


