Seminar May 4th, Econ 4140, Eric Nævdal

Exam 2014.

Problem 1

(a) Evaluate $\int_{-\pi}^{\pi}\left(\int_{\pi}^{2 \pi} \frac{\sin (x y)}{x} d x\right) d y$. (Hint: You will need a symmetry property.)
(b) Let $f(x)$ be a given C^{2} strictly increasing strictly convex function defined for all real x, and define f_{1}, f_{2}, \ldots inductively by
$f_{1}(x)=f(x), \quad$ and $\quad f_{n+1}(x)=f^{\prime}\left(f_{n}(x)\right), \quad$ each $n=1,2, \ldots$
Use induction to show that all the f_{n} are quasiconvex.
(a) See solution.

Here is the function we integrate:

(b). We need two bit of information to solve this. We know that that $f(x)$ is strictly increasing and convex and therefore quasiconvex with $f^{\prime}(x)>0$ and $f^{\prime \prime}(x)>0$. We use an inductive proof.

Steg 1: Show that $f_{1}(x)$ is quasiconvex. We already did this.

Steg 2: Show that if $f_{n}(x)$ er quasiconvex then $f_{n+1}(x)=$ $f^{\prime}\left(f_{n}(x)\right)$ is also quasiconvex which holds if $f^{\prime}(x)$ is strictly increasing which it is.

Problem 2.

Problem 2 Let $m>0$ be a constant. Consider for each m the matrices

$$
\mathbf{A}=\mathbf{A}_{m}=\left(\begin{array}{cc}
m^{3} & \frac{3}{2} m^{-7} \\
\frac{1}{2} m^{13} & 0
\end{array}\right) \quad \text { and } \quad \mathbf{B}=\mathbf{B}_{m}=\left(\begin{array}{ccc}
m^{3} & \frac{3}{2} m^{-7} & 2 \\
\frac{1}{2} m^{13} & 0 & 0 \\
m^{5} & m^{-5} & 4
\end{array}\right)
$$

(a) Show that $\left(-m^{-3}, m^{7}\right)^{\prime}$ is an eigenvector for \mathbf{A}_{m}, and that its associated eigenvalue $\lambda=\lambda(m)$ is negative.
(b) Find the other eigenvalue $\mu=\mu(m)$ of \mathbf{A}_{m}, and an associated eigenvector.
(c) Find the only $m>0$ such that \mathbf{B}_{m} and \mathbf{A}_{m} have same rank.
a) Vi beregner:

$$
\begin{aligned}
& {\left[\begin{array}{cc}
m^{3} & \frac{3}{2} m^{-7} \\
\frac{1}{2} m^{13} & 0
\end{array}\right]\left[\begin{array}{c}
-m^{-3} \\
m^{7}
\end{array}\right]=\lambda_{1}\left[\begin{array}{c}
-m^{-3} \\
m^{7}
\end{array}\right]} \\
& {\left[\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2} m^{10}
\end{array}\right]=\lambda_{1}\left[\begin{array}{c}
-m^{-3} \\
m^{7}
\end{array}\right]}
\end{aligned}
$$

The last equality holds if $\lambda_{1}=-1 / 2 m^{3}$.
b)

We have that $\left|\mathbf{A}_{\mathrm{m}}-\lambda \mathbf{I}_{2}\right|=\lambda^{2}-m^{3} \lambda-3 / 4 m=0$. The solution is:

$$
\lambda_{2}=\frac{m^{3}+\sqrt{m^{6}-4 \frac{-3}{4} m^{6}}}{2}=\frac{3}{2} m^{3}
$$

In order to find the eigenvector associated with λ_{2}, we must
have:

$$
\left[\begin{array}{cc}
m^{3} & \frac{3}{2} m^{-7} \\
\frac{1}{2} m^{13} & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{3}{2} m^{3}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Written on scalar form we have two equations, but we only need one of them. E.g. we have that $2 m^{3} x+3 m^{-7} y=3 m^{3} x$. This implies that $3 y=m^{10} x$ so the eigenvector is given by:

$$
\mathbf{v}=r\left[\begin{array}{c}
1 \\
\frac{1}{3} m^{10}
\end{array}\right]
$$

Here r is an arbitrary non-zero scalar.
c) $\operatorname{Rank}\left(\mathbf{A}_{m}\right)$ is obviously 2. $\operatorname{Rank}\left(\mathbf{B}_{m}\right) \leq 3$. If $\operatorname{det}\left(\mathbf{B}_{m}\right)=0$, $\operatorname{Rank}\left(\mathbf{B}_{m}\right)=\operatorname{Rank}\left(\mathbf{A}_{m}\right) \cdot \operatorname{det}\left(\mathbf{B}_{m}\right)=m^{8}-3 m^{6}=m^{6}\left(m^{2}-3\right)=0$ $\rightarrow m=\sqrt{3}$.

Problem 3)

Problem 3 Let G and H be C^{2} functions defined on $(0, \infty)$, let $m>0$ be a constant and S be the open first quadrant $S=\{(x, y) ; x>0, y>0\}$. For $x=x(t), y=y(t)$, consider the differential equation system - valid from time $t=0$ until the first time $T \geq 0$ for which $(x(T), y(T)) \notin S:$

$$
\begin{align*}
& \dot{x}=G(x)+H(y) \\
& \dot{y}=\left[m^{3}-G^{\prime}(x)\right] \cdot y \tag{D}
\end{align*}
$$

(Observe that there is a derivative sign $« G^{\prime} »$ in the second equation.)
(a) Show that if $H^{\prime}>0>G^{\prime \prime}$ (so that in particular, $m^{3}-G^{\prime}$ is strictly increasing), then
(i) the system has at most one equilibrium point in S (note $x y>0$ in S !), and
(ii) if such one exists, it is a saddle point. (Hint: a term will vanish and simplify.)

Let from now on $G(x)=2 x^{1 / 2}$ and $H(y)=-2 y^{-3 / 4}$ so that the saddle point has coordinates $(\bar{x}, \bar{y})=\left(m^{-6}, m^{4}\right)$. (You need not show this.)
(b) Put $m=1$. For those two integral curves (i.e. particular solution trajectories) $(x(t), y(t))$ which converge to (\bar{x}, \bar{y}) as $t \rightarrow+\infty$, show that the slope $\frac{y(t)-\bar{y}}{x(t)-\bar{x}}$ converges to -1 . (Hint: Problem 2 gives information which likely saves time.)
(c) Put $m=1$. Sketch a phase diagram and indicate a few representative integral curves.
a)
(i) If there is an equilibrium in S, it must solve $\dot{y}=0 \rightarrow m^{3}$ $G^{\prime}(x)=0$. As $m^{3}-G^{\prime}(x)$ is strictly increasing there is at most one value of x, denoted $x_{s s}$ that solves the equation. We then must find a solution to $G\left(x_{s s}\right)=-H(y)$. Again, as $H(y)$ is strictly increasing this equation has at most one solution, denoted $y_{s s}$.
(ii) We linearize the system around the equilibrium point $\left(x_{s s}\right.$, $\left.y_{s s}\right)$. This yields

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{x} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{cc}
G^{\prime}\left(x_{s s}\right) & H^{\prime}\left(y_{s s}\right) \\
-G^{\prime \prime}\left(x_{s s}\right) & \left.\left(m^{3}-G^{\prime}\left(x_{s s}\right)\right)\right]
\end{array}\right]\left[\begin{array}{l}
x-x_{s s} \\
y-y_{s s}
\end{array}\right]} \\
& =\left[\begin{array}{cc}
G^{\prime}\left(x_{s s}\right) & H^{\prime}\left(y_{s s}\right) \\
-G^{\prime \prime}\left(x_{s s}\right) & 0
\end{array}\right]\left[\begin{array}{l}
x-x_{s s} \\
y-y_{s s}
\end{array}\right]
\end{aligned}
$$

We can calculate that the determinant of the 2×2 matrix is $G^{\prime \prime}\left(x_{s s}\right) H^{\prime}\left(y_{s s}\right)$. As $G^{\prime \prime}<0$ and $H^{\prime}(y)>0$, this determinant is negative so the system is a saddle point.
b) We now denote $x_{s s}$ as \bar{x} and $y_{s s}$ as \bar{y}. For $m=1$, the system is then:

$$
\dot{x}=2 \sqrt{x}-\frac{2}{y^{3 / 4}}, \dot{y}=\left(1-\frac{1}{\sqrt{x}}\right) y
$$

We linearise the system around its steady state and get the following system on matrix form:

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x} \\
\dot{y}
\end{array}\right] } & =\left(\begin{array}{cc}
\frac{1}{\sqrt{x_{s s}}} & \frac{3}{2 y_{s s}^{7 / 4}} \\
\frac{y s s}{2 x_{s s}^{3 / 2}} & 1-\frac{1}{\sqrt{x_{s s}}}
\end{array}\right)\left[\begin{array}{l}
x-x_{s s} \\
y-y_{s s}
\end{array}\right] \\
& =\left(\begin{array}{cc}
1 & \frac{3}{2} \\
\frac{1}{2} & 0
\end{array}\right)\left[\begin{array}{l}
x-x_{s s} \\
y-y_{s s}
\end{array}\right]
\end{aligned}
$$

We recognize the matrix in the last expression as \mathbf{A}_{1} from the previous exercise. In 2a) we have been informed that the eigenvector associated with the negative eigenvalue is $[-1,1]$. Therefore the slope of the stable saddle path is -1 in $\left(x_{s s}, y_{s s}\right)=$ $(1,1)$.

Problem 4.

Problem 4 Let $x_{0}>0$ and consider - but do not solve! - the optimal control problem $V\left(x_{0}\right)=\max _{u(t) \geq 0} \int_{0}^{2014} \frac{-6 e^{-t}}{u(t)} d t, \quad$ where $\quad x(0)=x_{0}, \quad x(2014) \geq 0, \quad \dot{x}=2 x^{1 / 2}-2 u^{3}$.
(a) State the conditions from the maximum principle.
(You can safely disregard the «p p_{0} constant and put it $=1$).
(b) Let $x(t)$ satisfy the conditions from the maximum principle with adjoint variable $p(t)$. Let $y(t)=e^{t} p(t)$, so that $\dot{y}=y+e^{t} \dot{p}$ (then y is the current-value adjoint).
Show that (x, y) satisfies the differential equation system (D) of Problem 3, with $G(x)=2 x^{1 / 2}, H(y)=-2 y^{-3 / 4}$ and $m=1$ (as in Problem 3 part (c)).
(Hint: you shall obtain the condition $u(t)=(y(t))^{-1 / 4}$.)
(c) «Bonus» question: this part will be deleted (zero-weighted) if that benefits your grade. Consider your phase diagram for Problem 3 part (c), and assume $x(0)=x_{0}=1=\bar{x}$ (the x-coordinate of the saddle point). Take for granted that the optimal path x^{*} ends at $x^{*}(2014)=0$. Use this to argue for an upper or a lower bound for $V^{\prime}(1)$; i.e.,

Find an appropriate $a>0$ and

- either argue that $V^{\prime}(1) \leq a$
- or argue that $V^{\prime}(1) \geq a$.
(Recall that $V=V\left(x_{0}\right)$ is the optimal value as function of initial state x_{0}.)

(a) The problem is:

$$
\max _{u(t) \geq 0}^{2014} \int_{0}^{20-6 e^{-t}} \frac{u}{u} d t \text { s.t }: x(0)=x_{0}, x(2014) \geq 0, \dot{x}=2 \sqrt{x}-2 u^{3}
$$

We form the Hamiltonian:

$$
H=\frac{-6 e^{-t}}{u}+p\left(2 \sqrt{x}-2 u^{3}\right)
$$

We note that H is strictly concave in x and as

$$
\partial^{2} H / \partial u^{2}=-\frac{12 e^{-t}}{u^{3}}-12 p u<0
$$

the Hamiltonian is clearly concave in u as well as long as p is positive. The maximum principle gives the following conditions:

$$
\begin{aligned}
& u=\max \left(0, \frac{e^{-t / 4}}{p^{1 / 4}}\right) \\
& \dot{p}=-\frac{p}{\sqrt{x}} \\
& \dot{x}=2 \sqrt{x}-2 u^{3}
\end{aligned}
$$

In addition we have the transversality condition $p(2014) \geq 0$, $(=0$ if $x(2014)>0)$.
(b). If $p=y e^{-t}$ then u may be written:

$$
u=\max \left(0, \frac{e^{-t / 4}}{\left(y e^{-t}\right)^{1 / 4}}\right)=\max \left(0, \frac{1}{y^{1 / 4}}\right)=y^{-1 / 4}
$$

Thus we can write $\dot{x}=2 \sqrt{x}-2 y^{-3 / 4}$. As $y=y+e^{t} \dot{p}$ we have that $\dot{p}=(\dot{y}-y) e^{-t}$. This implies that we can write

$$
\begin{gathered}
\dot{p}=(\dot{y}-y) e^{-t}=-\frac{\partial H}{\partial x}=\frac{p}{\sqrt{x}}=\frac{y e^{-t}}{\sqrt{x}} \\
\Downarrow \\
\dot{y}=y-\frac{y}{\sqrt{x}}=\left(1-\frac{1}{\sqrt{x}}\right) y
\end{gathered}
$$

Thus they are the same.

Exam 2017

1.c) The phase diagram

Saddlepaths

Problem 3b)

When $m=0$, then the maximum principle states that:

$$
\begin{aligned}
& \frac{\partial H}{\partial u}=-x^{k+1}+p x>0 \rightarrow " u=\infty " \\
& \frac{\partial H}{\partial u}=-x^{k+1}+p x<0 \rightarrow u=0 \\
& \dot{p}=-2 x+u(k+1) x^{k}-p u
\end{aligned}
$$

We try the solution $u=0$. Then $x=x_{0}$ and $p=-2 x_{0}(t-T)$.
Bur then we must have then we must have that:

$$
\frac{\partial H}{\partial u}=-x_{0}^{k+1}-2 x_{0}^{2}(t-T)<0 \text { for all } t \geq 0
$$

Since this expression is increasing in t, we now that if it holds for $t=0$, it holds for all t. Therefore:

$$
\frac{\partial H}{\partial u}=-x_{0}^{k+1}+2 x_{0}^{2} T<0 \rightarrow T<\frac{1}{2} x_{0}^{k-1}
$$

