Seminar May 4th, Econ 4140, Eric Naevdal

Exam 2014.

Problem 1
r
(a) Evaluate / ( / @ dr) dy. (Hint: You will need a symmetry property.)
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(b) Let f(x) be a given C* strictly increasing strictly convex function defined for all real
x, and define f;. fz, ... inductively by

fil@)=fz), and  fanl) = f(fa(z). eachn=1.2,...

Use induction to show that all the f, are gquasiconvex.

(a) See solution.

Here is the function we integrate:
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(b). We need two bit of information to solve this. We know that
that f(z) is strictly increasing and convex and therefore

quasiconvex with f’(x) > 0 and f”(:}:) > 0. We use an

inductive proof.
Steg 1: Show that fi(z) is quasiconvex. We already did this.

Steg 2: Show that if f(x) er quasiconvex then f ,(z) =

f’( I (a:)) is also quasiconvex which holds if f’ (:L’) is strictly

increasing which it is.

Problem 2.

Problem 2 Let m > () be a constant. Consider for each m the matrices

.3 3 SmT 2
m? —m~ lm _2:”
A=A, = 1 ., and B =B, = ~m3 0 0
-1 0 2 _
m” m~— 4

(a) Show that (—=m~*, m") is an eigenvector for A,,, and that its associated eigenvalue
A = A(m) is negative.

(b) Find the other eigenvalue p = p(m) of A,,. and an associated eigenvector.

(¢} Find the only m = 0 such that B, and A, have same rank.



a) Vi beregner:
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The last equality holds if \; = —Yem?.

b)

We have that |A,, — N\L,| = N> — m*\ — %m = 0. The solution is:
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In order to find the eigenvector associated with \,, we must

have:



Written on scalar form we have two equations, but we only
need one of them. E.g. we have that 2mz + 3m 'y = 3m’w

This implies that 3y = m'"z so the eigenvector is given by:

Here ris an arbitrary non-zero scalar.

c) Rank(A,) is obviously 2. Rank(B,) < 3. If det(B,) = 0,
Rank(B,) = Rank(A,). det(B,)) = m® — 3m® = m’(m> - 3) =0

— m =3,

Problem 3)



Problem 3 Let G and H be 2 functions defined on (0, oc), let m > () be a constant and
S be the open first quadrant S = {(z,y); = > 0, y > 0}. For = = z(t), y = y(t), consider
the differential equation svstem — valid from time ¢ = () until the first time T > 0 for which
(x(T). y(T)) € 5:
T=G(x)+ H(y)
. 3 At (D)
4= [m - {.r]] -y
{Observe that there is a derivative sign «(G'» in the second equation.)
(a) Show that if H' > 0 > G" (so that in particular, m* — G’ is strictly increasing), then
(i) the system has at most one equilibrium peint in 5 (note xy = 0 in 51), and
(i) if such one exists, it is a saddle point. ( Hinf: a term will vanish and simplify. )

Let from now on G(x) = 2rY/2 and H(y) = —2y~*/* so that the saddle point has coordinates
(z,9) = (m™, m*). (You need not show this.)

{(b) Put m = 1. For those two integral curves (i.e. particular solution trajectories)

(z(t), y(t)) which converge to (T, 7) as = +0g, show that the slope J":::j CONVETEes

to —1. (Hint: Problem 2 gives information which likely saves time.)

(c) Put m = 1. Sketch a phase diagram and indicate a few representative integral curves.

a)

(i) If there is an equilibrium in S, it must solve § = 0 — m? —
G'(x) = 0. As m*® — G'(z) is strictly increasing there is at most
one value of z, denoted =z, that solves the equation. We then
must find a solution to G(z,,) = —H(y). Again, as H(y) is strictly

increasing this equation has at most one solution, denoted y,,.

(ii) We linearize the system around the equilibrium point (z,,,

Y,,)- This yields



il | o) () e,
gl —G”(xss) (m?’—G’(xss)) Y-y,
o) s,
C|=G"(z,) 0 |y,

We can calculate that the determinant of the 2x2 matrix is
G/’($SS)HI<?/53>' As G <0 and H'(y) > 0, this determinant is

negative so the system is a saddle point.

b) We now denote z,, as * and y,, as y. For m = 1, the system

is then:

2 1
T=2N0 ———, y = 1—]y
93/4 [ \NT

We linearise the system around its steady state and get the

following system on matrix form:



1 3
s T 29" ||z — T
g| s 1 |ly—u,
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3 0] Y=y,

We recognize the matrix in the last expression as A, from the
previous exercise. In 2a) we have been informed that the
eigenvector associated with the negative eigenvalue is [-1, 1].

Therefore the slope of the stable saddle path is —1 in (x,, ¥,,) =

(1, 1).



Problem 4.

Problem 4 Let x; > 0 and consider — but do not solve! — the optimal control problem

W01 gt

dt, where =z(0) =z x(2014) > 0, i = 2r'/? = 2u®,

Vizrg) = max
(o) e u(t)

(a) State the conditions from the maximum principle.
(You can safely disregard the «pg» constant and put it = 1).

(b) Let z(t) satisfy the conditions from the maximum principle with adjoint variable p(t).
Let y(t) = e'p(t), so that y = y + e'p (then y is the current-value adjoint).
Show that (r,y) satisfies the differential equation system (D) of Problem 3, with
G(x) =22, H(y) = —2y~** and m = 1 (as in Problem 3 part (c)).
(Hint: you shall obtain the condition u(t) = (y(t)) _I'H.]I

(c) «Bonus» question: this part uill be deleted (zero-weighted) if that benefits your grade.

Consider your phase diagram for Problem 3 part (¢), and assume z(()) =xp=1=1
(the z-coordinate of the saddle point). Take for granted that the optimal path =*
ends at z*(2014) = (. Use this to argue for an upper or a lower bound for V'(1); 1.e.,
Find an appropriate a = () and
— either argue that V(1) < a
— or argue that V'(1) = a.
(Recall that V' = V(xy) is the optimal value as function of initial state xq.)

(a) The problem is:

2014 et . ;
n?ti}g f Tdt st ZL’(O) = x,, x(2014) >0,z = 2\/; —2u

u

We form the Hamiltonian:

—t
H:6—e+p(2 x—2u3)
u

We note that H is strictly concave in x and as



—t
62H/8u2 = —1263 —12pu <0
u

the Hamiltonian is clearly concave in u as well as long as p is

positive. The maximum principle gives the following conditions:

. p

p=_ P
Jz

i = 2z — 20

In addition we have the transversality condition p(2014) > 0,

(= 0 if 2(2014) > 0).
(b). If p = ye' then u may be written:

—t/4
et

b T

u = max |0,

= max [O, L] = y71/4
1/4
Y

Thus we can write z = 2\/_—23/_3/4. As y=y+e'p we have

that p = (y — y)et. This implies that we can write



Thus they are the same.
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1.c) The phase diagram

Saddlepaths




Problem 3b)

When m = 0, then the maximum principle states that:

o _ " pr>0—"u=o00"
8u

on _ " L pr<0—>u=0
8u

p:—2:p+u<k+1>:1: — pu
We try the solution v = 0. Then = = z, and p = -2x(t — 7).

Bur then we must have then we must have that:

OH _ g“ 2x° ( T)<O forall t >0
8u

Since this expression is increasing in ¢, we now that if it holds

for t = 0, it holds for all t. Therefore:

aH 1
au xém + 2:1:§T <0-T< Exé”



