
Seminar May 4th, Econ 4140, Eric Nævdal 

Exam 2014.  

 

(a) See solution.  

Here is the function we integrate: 

 

 



(b). We need two bit of information to solve this. We know that 

that f(x) is strictly increasing and convex and therefore 

quasiconvex with ( )f x¢  > 0 and ( )f x¢¢  > 0.  We use an 

inductive proof.  

Steg 1: Show that f1(x) is quasiconvex. We already did this. 

Steg 2: Show that if fn(x) er quasiconvex then fn+1(x) = 

( )( )n
f f x¢  is also quasiconvex which holds if ( )f x¢  is strictly 

increasing which it is.  

 

Problem 2.  

 



a) Vi beregner:  
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The last equality holds if l1 = –½m³.  

b)  

We have that |Am – lI2| = l² – m³l – ¾m = 0. The solution is: 
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In order to find the eigenvector associated with l2, we must 

have: 
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 Written on scalar form we have two equations, but we only 

need one of them. E.g. we have that 2m³x + 3m–7y = 3m³x. 

This implies that 3y = m10x so the eigenvector is given by: 
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Here r is an arbitrary non-zero scalar.   

c) Rank(Am) is obviously 2. Rank(Bm) £ 3. If det(Bm) = 0, 

Rank(Bm) = Rank(Am). det(Bm) = m8 – 3m6 = m6(m² – 3) = 0 

 m = 3 .  

 

Problem 3) 



 

a)  

(i) If there is an equilibrium in S, it must solve y  = 0 → m³ – 

G'(x) = 0. As m³ – G'(x) is strictly increasing there is at most 

one value of x, denoted xss that solves the equation. We then 

must find a solution to G(xss) = –H(y). Again, as H(y) is strictly 

increasing this equation has at most one solution, denoted yss.   



(ii) We linearize the system around the equilibrium point (xss, 

yss). This yields 
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We can calculate that the determinant of the 2´2 matrix is 

( ) ( )ss ss
G x H y¢¢ ¢ . As  and H'(y) > 0, this determinant is 

negative so the system is a saddle point.  

0G ¢¢ <

 

b) We now denote xss as x  and yss as y . For m = 1, the system 

is then: 

 
3/4

2 1
2 , 1x x y

y x

æ ö÷ç ÷= - = -ç ÷ç ÷çè ø
  y   

We linearise the system around its steady state and get the 

following system on matrix form: 
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We recognize the matrix in the last expression as A1 from the 

previous exercise. In 2a) we have been informed that the 

eigenvector associated with the negative eigenvalue is [–1, 1]. 

Therefore the slope of the stable saddle path is –1 in (xss, yss) = 

(1, 1). 

 



Problem 4. 

 

(a) The problem is: 
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We form the Hamiltonian: 
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We note that H is strictly concave in x and as 
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the Hamiltonian is clearly concave in u as well as long as p is 

positive. The maximum principle gives the following conditions: 
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In addition we have the transversality condition p(2014) ³ 0, 

(= 0 if x(2014) > 0).  

(b).  If p = ye–t then u may be written: 
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Thus we can write 
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-

= - . As  we have 

that 

ty y e= + p

( ) tp y y e-= -  . This implies that we can write 
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    Thus they are the same. 
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1.c) The phase diagram 
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Problem 3b) 

When m = 0, then the maximum principle states that: 

 

( )

1

1

0 "

0 0

2 1

k

k

k

H
x px u

u
H

x px u
u

p x u k x pu

+

+

¶
= - + >  = ¥

¶
¶

= - + <  =
¶
= - + + -

"

  

We try the solution u = 0. Then x = x0 and p = -2x0(t – T).  

Bur then we must have then we must have that: 
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Since this expression is increasing in t, we now that if it holds 

for t = 0, it holds for all t. Therefore: 
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