
Problem 1 Note, this problem involves more than one topic. Parts (c) and (d) require
you to use only the information given in (a) and (b), but you can solve part (e) by use of
any means you wish.

Let M =

(
7 2
16 3

)
.

(a) w = (1 2)′ is an eigenvector of M. Find the corresponding eigenvalue µ > 0.

(b) Find an eigenvalue λ < 0 and a corresponding eigenvector v.

(c) What can parts (a) and (b) tell us about the de�niteness of the quadratic form
q(x, y) = (x, y)M

(
x
y

)
? If applicable: what information/property would be missing?

(Hint/warning: mind the details. You are required to use only parts (a) and (b).)

(d) What can parts (a) and (b) tell us about the stability property of the di�erential
equation system ż = Mz? If unstable, can (a) and (b) tell whether any non-constant
particular solution converges? (Again, you are required to use only parts (a) and (b).)

(e) Let w =
(
1
2

)
as in part (a) and h be a given continuously di�erentiable function.

Consider the di�erential equation system
(
ẋ
ẏ

)
= M

(
x
y

)
+ h(t)w.

• Deduce a second-order di�erential equation for x (for general h), and

• �nd a particular solution of that equation if h(t) = eπt, and

• explain how to �nd a particular solution if instead h(t) = t2019.

How to solve, and grading notes: This note starts at (c) and (d) to highlight how
they only require information given in the (a) and (b) problem text � they do not require
solving (a) and (b). Also, there are notes to be made on (c) in particular.

(c) The 2018 version did not stress anything about what could be inferred when the
matrix is not symmetric, and the grading guidelines for 2018 mentioned that it was
not required. This year's class has been informed that the non-symmetric matrix can
rule out de�niteness properties; nevertheless, the committee must be aware the risk
that the problem question could invite the answer �nothing, M is not symmetric�.
Such an answer would in any case be worth a partial score (they are expected to
know that symmetry matters!), and the committee might consider to adjust partial
scores upwards due to earlier versions � including 2018 � not stressing this at all.

It was certainly intentional to write �What can parts . . . � to suggest that there
could be partial information, as there will always be when an eigenvalue sign is given.
Indeed, here we can rule out pos./neg. semide�niteness and conclude completely.

To solve part (c): From (a), q(w) = w′Mw = µ||w||2 > 0, so q attains positive values
(ruling out negative semide�niteness). From (b) we know that q(v) = v′Mv = λ||v||2
for some (eigenvector, hence non-null) v. So q attains negative values as well, since
λ < 0. As q attains both signs, we can conclude that q is inde�nite.
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A solution based on symmetrization but still using only parts (a) and (b), could go as
follows: q has the same de�niteness property as M′+M. From (a), w′(M′+M)w =
(w′M′)w +w′µw = (Mw)′w + µ||w||2 = 2µ||w||2 > 0 and similar for v.

(d) Opposite-sign real eigenvalues ⇒ saddle point: unstable, and with two convergent
non-constant solution paths. (They were not asked to �nd those.)

Note that (c) and (d) only require the problem text of (a) and (b). Their solutions:

(a) Calculate Mw =
(
11
22

)
and identify it as a scaling 11 of w.

(b) Eigenvalues sum to trace, so λ = 7+3−µ = 7+3−11 = −1. To �nd an eigenvector:
M− λI =

(
8 2
16 4

)
, and v satis�es (8, 2)v = 0. Any nonzero scaling of (−1, 4)′ will do.

Note, if they solve out the eigenvalue from the characteristic polynomial: they are
allowed to know without deducing, that when n = 2 then p(λ) = λ2−λ trM+detM.

Finally, the di�erential equation for x:

(e) It is �known� � given in the book and and easy to memorize � that one is going to
obtain ẍ− ẋ trM+ x detM = f(t) for some f , and it will likely be acceptable for
the �rst bullet item to write the left-hand side of this out and only spend calculations
on f :

• ẍ = 7ẋ+2ẏ+ ḣ = 7ẋ+2(16x+3y+2h)+ ḣ = 7ẋ+32x+4h+ ḣ+3 · (ẋ−7x−h)
so that ẍ− 10ẋ− 11x = h+ ḣ

• If h(t) = eπt, the RHS is (π + 1)eπt. Try Keπt and �t K:
K · [π2− 10π− 11]eπt = (π+1)eπt yields a particular solution

π + 1

π2 − 10π − 11
eπt

(They are not required to cancel down to eπt/(π − 11).)

• If h(t) = t2019, the right-hand side is a 2019th degree polynomial. For a particular
solution, try a general 2019th degree polynomial and �t coe�cients.
(The �2019� was chosen to discourage anyone from carrying it out in full detail.)

Problem 2 Consider the dynamic programming problem

Jt0(x) = max
ut>0

{
xT+lnxT+

T−1∑
t=t0

(ut+lnut)
}
, xt+1 = xt−ut starting at xt0 = x > 0.

It is possible to start at part (b) and deduce (a) afterwards.

(a) Calculate JT−1 and JT−2.

(b) Use induction to show that for each s = 0, 1, . . . , we have JT−s(x) = x+CT−s ·ln
x

CT−swith CT−s > 0 not depending on x.
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(c) Consider the problem obtained in the limit T → +∞:

• State the associated Bellman equation.

• Why can we not expect the Bellman equation to have a (�nite) solution J(x)?
(Hint: Look at the limit of CT−s.)

How to solve Problem 2: This note will do (b) then (c) then (a).

(b) The statement is true at time T i.e. τ = 0, with C0 = 1. For induction, assume true
for τ . Then for τ + 1 we have the following, denoting c = CT−τ :

JT−(τ+1)(x) = max
u>0

{
u+ lnu+ Jτ (x− u)

}
= max

u>0

{
u+ lnu+ c ln

x− u
c

+ x− u
}

= x+max
u

{
lnu+ c ln

x− u
c

}
By the induction hypothesis, c > 0. A maximizing u∗ ∈ (0, x) will exist, and is given
by the FOC 1

u∗
= c

x−u∗ so that u∗ = x
1+c

and thus x−u∗
c

= x
1+c

as well. Inserting:

Jτ−1(x) = x+ ln
x

1 + c
+ c ln

x

1 + c
, OK with CT−τ−1 = 1 + c = 1 + CT−τ .

(c) Because CT−τ → +∞ with T , the in�nite horizon problem has a value of �x +
∞ ln x

∞ = x+∞· ln 0 = −∞�, and so we cannot expect any solution to the Bellman
equation J(x) = maxu>0

{
u+ lnu+ J(x− u)

}
.

(a) From (b), Cs = 1 + s, so JT−1(x) = x+ 2 ln x
2
and JT−2(x) = x+ 3 ln x

3
.

Notes for grading: A fairly similar seminar problem was assigned after Easter. There,
a discount factor had to be corrected half a week before the seminar, and just in case it
still messed up for someone, the above Problem 2 has no discounting.
No discounting is �why� the in�nite-horizon problem has −∞ value � and there is a

possibility that the wording might be taken to invite an answer like �this problem has no
discounting�. Obviously there is insight in such an answer, but without context would be
insu�cient (consider a problem where optimum yields 0 running utility from the second
period on). Should such answers show up, the committee should exercise best judgement.
The �can not expect� wording re�ects that Mathematics 3 does not cover any precise

conditions for when the Bellman equation is necessary/su�cient, so the question is not
about disproving any �false solution candidate that satis�es the Bellman equation�. It
would be way good enough to point out that the DP problem has no solution (therefore
none that can �t the Bellman criterion) � or to write that C = C +1 would be impossible.
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Problem 3 Let T , r and x0 be constants, all > 0. Consider the variational problem

min

∫ T

0

e−rt
(
x(t)3 · ẋ(t)

)2
dt, x(0) = x0, x(T ) = 2.

(a) • State the associated Euler equation.

• State the conditions from the maximum principle, obtained by rewriting as an
optimal control problem (maximization!) with control u = ẋ ∈ (−∞,+∞).

Let from now on x0 = T = 1 and r = ln 2. Take for granted that this x∗(t) is optimal:

x∗(t) =
√
3 · 2t − 2 so that ẋ∗(t) =

3 ln 2

2
· 2t

x∗(t)
(∗)

Hint: It is possible to answer the following part (b) without solving any di�erential equation,
if you use formulae (∗). You are not asked to show or verify (∗).

(b) • Calculate p(1), where p is the adjoint variable from the maximum principle.
(You are allowed to calculate the current-value adjoint λ(1) instead.)

• Find an expression for how much, approximately, the optimal value changes if
T increases from 1 to 1+ 1/144. (If you did not manage to solve the previous
bullet item, use the number e in place of p(1) or of λ(1).)

How to solve; notes and guidelines:

(a) • The derivative wrt. state is e−rt · 6x5(ẋ)2, and the wrt. control: e−rtx6 · 2ẋ.
Total derivative of the latter: 2 ·

[
− re−rtx6ẋ+ 6e−rtx5ẋ2 + e−rtx6ẍ

]
. Equating:

3e−rtx5(ẋ)2 = −re−rtx6ẋ+ 6e−rtx5ẋ2 + e−rtx6ẍ which, if so you prefer, can be

simpli�ed to 0 = −rxẋ+ 3ẋ2 + xẍ.

• To maximize
∫ T
0
(−e−rt) · x6u2 dt with ẋ = u and x(0) and x(T ) given, we get

Hamiltonian H(t, x, u, p) = −e−rtx6u2 + pu, and conditions:

u∗ maximizes pu− e−rtx6u2 over u ∈ R and

ṗ = 6e−rt(x∗)5(u∗)2 (no transversality condition)

or the equivalent current-value formulation if so they prefer: then u∗ would
maximize λu− x6u2 where λ̇ = rλ+ 6x5u2. One can hardly require it to stated
that there is no condition on p(T ) (it is asked what conditions there are, not
which ones there aren't), which is why it isn't double-underlined above.
Other notes: They are free to include �ẋ∗ = u∗�. The degenerate case with
p0 = 0 need not be mentioned. Some would probably solve out for u∗ by the
FOC, which can hardly be penalized when the control region is open. And, it
will be needed in part (b); for errors in maximization, the committee should
exercise its best judgement considering (a) and (b) together.
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(b) Notes �rst: The main points of part (b) are to apply the maximum principle to
calculate u∗ and p in terms of each other (this time solving out for p(1)) and to
know the sensitivity result that the derivative wrt. T is the Hamiltonian evaluated at
optimum at T . The theory is more important than getting the powers of two correct.

• From the maximum principle, u∗ = p/(2e−rtx6) so p(1) = 2e−r(x∗(1))6u∗(1).
Inserting 2e−r = 1, x∗(1) = 2 and u∗(1) = 3

2
ln 2 from (∗), yields p(1) = 96 ln 2.

The current-value: λ(1) would be twice this.

• Evaluate (at T = 1) the optimized Hamiltonian as p(1) · 3
2
ln 2− 1

2
26(3

2
ln 2)2 =

3 · 25 · 3
2
(ln 2)2 − 25(3

2
ln 2)2 = 72 · (ln 2)2 and scale by 1/144: answer = 1

2
(ln 2)2.

(Note, this is a �present-value question� and needs the discounting.)

Problem 4 Let φ be the strictly increasing function φ(z) = z1/3 + ez/3.
Decide the quasiconcavity/quasiconvexity(/both/neither) of the three functions

f(z) = φ(z + 1) + φ(z − 1), g(x, y) = φ(y − x · (1− x)) and h(x, y) = φ(x3/2ye),

f and g de�ned everywhere and h for x ≥ 0, y ≥ 0 (all domains convex).

How to solve, and notes: The committee should exercise its judgement on whether it
goes without saying � especially when this is the end of the exam � that we cannot have
quasiconcavity for g and cannot have quasiconvexity for h.

f : f , like φ, is a strictly increasing function of a single variable (being the sum of two
such), thus both quasiconcave and quasiconvex.

(�Sum of quasiconvexes� etc., is a fallacy: such one need not be quasiconvex. The
counterexample given on the board was

√
|z + 1|+

√
|z − 1|.)

g: A strictly increasing transformation of the convex function y−x+x2, is quasiconvex.

h: x3/2ye is an increasing transformation of a Cobb�Douglas, hence quasiconcave. Being
an increasing transformation of this, h is quasiconcave. Notes:

� The above justi�cation would hold, given how well-known the Cobb�Douglas
should be. See however next item. A more zealous argument would be that
φ(x3/2ye) is an increasing transformation of ln(x3/2ye) = 3

2
lnx+ e ln y, which is

a sum of concaves.

� The 2018 exam asked for the quasiconcavity of (16xy)3, and nobody recognized
it as a transformation of a concave Cobb�Douglas. It has been stressed this
semester. Hopefully, the exam papers will o�er justi�cation of the quasiconcavity
of x3/2ye, but chances are that there will both be students which skip justi�cation
because they cannot given any, and those who skip because they don't see the
need. Exercise judgement; the sum 3

2
+ e of exponents is deliberately > 1, in

order to trap those who claim concavity without checking.
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