ECON 3150/4150 - INTRODUCTORY ECONOMETRICS

LECTURE PLAN -- SPRING 2012

Lectures:

Time and place: Friday 10:15-12:00, Auditorium 1 (Weeks 3 - 17: 13 lectures)

Monday 16:15-18:00, Auditorium 7 (Weeks 3 - 9: 6 lectures)

Duration: 19 two-hour lectures.

First lecture: January 16. Last lecture: April 27.

No lecture: February 20 and 24 (week 8, lecture free week) and April 6 (week 14, Easter).

Lecturers: Erik Biørn (EB, 13 lectures) and Ragnar Nymoen (RN, 6 lectures)

Seminars and Stata exercises:

Schedule, seminar leaders and other details on web site

Syllabus:

C. Hill, W.E. Griffiths, G.C. Lim: Principles of Econometrics, 4th ed., Wiley 2012, Chap. 1–10.

Schedule (may be subject to change):

Week	Lecture & Lecturer
	(EB, RN)
3	1-EB, 2-RN
4	3-RN,4-RN
5	5-RN,6-RN
6	7-RN,8-EB
7	9-EB,10-EB
8	-
9	11-EB,12-EB
10	13-EB
11	14-EB
12	15-EB
13	16-EB
14	-
15	17-EB
16	18-EB
17	19-EB

Lectured topics

EB lectures on Topics 1 & 5-12. RN lectures on Topics 2-4.

References to relevant chapters in the textbook are given in the title of the topics and in parentheses under the sub-topics (may be subject to change). The lectures will not cover all parts of the syllabus. Supplementary lecture notes will be posted on the web.

1. Introduction (Chapters 1 and 2).

What is Econometrics? (1)

Why models? On econometric modelling (2.1-2.2)

Data types in econometrics: Cross-section, Time series, Panel.

Data variation. Correlation. Correlation and causality.

Regression analysis without model.

2. The regression model with one fixed regressor (Chapter 2).

The regression function and the disturbance. 2.1 and 2.2.

Looking ahead: What does 'fixed regressors' mean, and why do we make this assumption? Ordinary Least Squares (OLS) estimators and their properties .

Gauss-Markov's Theorem (2.3-2.7).

Residuals and their relation to disturbances (errors).

Looking ahead: Variable transformations and the choice of functional form problem (2.8) Qualitative explanatory variable (2-9)

The lectures on topic 2 and 3 will assume of knowledge statistics at the level of the *Probability Primer* in Chapter 1. It is therefore a good idea to read the *Probability Primer* before Lecture 2. Later lectures will make more specific references to Appendices B and C

3. Inference in the regression model with one fixed regressor (Chapter 3).

Statistical background: The Normal, Chi-square and t-distribution.

One and two sided tests about the regression coefficient. (3.2-3.4.)

Confidence intervals for regression coefficients (3.1).

The P-value (3.5).

Examples related to Phillips curves and Engel functions .

4. The regression model with one stochastic regressor (Chapter 10 and Appendix B)

Statistical background: (Appendix B).

Expectation and variance to functions of stochastic variables.

Conditional distributions and conditional expectations.

The rule of iiterated expectation.

Linearity of conditional expectations, E(y|x).

The linear conditional expectation function: The linear regression function.

Binormal distribution as a `case study' – linear regression functions in both directions and marginal distributions normal.

Linear regression function as a modeling assumption: E(y|x), linear, but marginal distribution of x non-normal

Specification of the regression model (10.1).

Properties of OLS estimators (10.1.1, 10.1.2).

Inference.

Correlation and causality.

Looking ahead: Expectations and the Lucas critique.

5. Prediction and modelling issues (Chapter 4).

Estimating expected regressand [E(Y)].

Applying the simple regression model for prediction (4.1).

Prediction errors and prediction intervals.

Measuring goodness-of-fit.

6. Elements of statistical background for multiple regression (Appendix B and C).

Asymptotic theory: Probability limits and "Slutsky's theorem".

Consistency of OLS estimators in the regression model with stochastic regressors.

Survey of three important distributions related to N(0,1).

The Maximum Likelihood (ML) principle - generalities. Examples related to regression analysis.

Background to inference for joint hypotheses: The F-distribution (6A).

7. Multiple Least Squares Regression analysis (Chapters 5 and 6).

The least squares method with two regressors (5.1-5.6).

R- Square and standard error of regression.

Hypothesis testing in multiple regression, the F-test (6.1-6.5).

Relationshp between F-test statistics and R-Square.

The gross and partial effects of an explanatory variable (6.6).

The omitted variables problem (6.6).

Collinearity between the explanatory variables (6.7).

8. Random regressors and moment-based estimation (Chapter 10).

Some algebra for variances and covariances.

The simple method of moments (10.1, 10.2).

Instrumental variables – some basics and examples (10.3).

9. Functional form and dummy-variables (Chapter 7).

Log-linear models (4.4, 7.5).

Polynomial regression.

Dummy-variables as a way of representing qualitative explanatory variables (7.2-7.4)

Interactions, including interactions between qualititative variables.

Dummy variables and individual effects in a panel data regression model.

10. Extension of classical regression model: Disturbance heteroskedasticity (Chapter 8).

Consequences for the least squares estimator (8.2).

The generalised least squares estimator – weighted regression (8.3) .

Detection and handling of heteroskedasticity. How exploit residuals? Formal tests (8.4).

11. Extension of classical regression model: Disturbance auto-correlation (Chapter 9).

Consequences for the least squares estimator (9.1-9.3).

Auto-regressive processes – brief introduction (9.5-9.7).

Detection of and testing for auto-correlation. How exploit residuals? Durbin-Watson test (9.4).

12. Synthesis and conclusion

Overview of lectured topics.

Remarks on non-experimental data, simultaneity, exogeneity, etc.