Lecture note about CO’U(@, 15 2) to accompany Lecture 2

slide set,

Ragnar Nymoen

January 19, 2012

This note is a translation of Appendix 3.A in BN. We include it as documen-
tation and for completeness. If you are interested in this kind of exercise and can
formulate a more elegant proof, let me know!

With reference to the notation in Lecture 2 we have
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and we want to show that £ [éz ([32 — 52>] =0.
Start but noting that 3, — 85
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where we have used that

Next, use the expression BQ — (5 in the definition of cov (éz, 32) in (1):
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where we have used & = y.
Consider the case of n = 2: By inspection, the expression after the second
equality sign becomes
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i.e., the sum of all cross products between y; and e;(x; — Z). A typical term in
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By this argument, we see that the expression for cov (&, B2> simplifies to
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