Answers to DIY questions, Lecture 4

Ragnar Nymoen

January 25, 2013

DYI Exercise 1

1.

$$
\begin{aligned}
\operatorname{Cov}\left(\varepsilon_{i}, \varepsilon_{j}\right) & =E\left[\left(\varepsilon_{i}-E\left(\varepsilon_{i}\right)\left(\varepsilon_{j}-E\left(\varepsilon_{j}\right)\right]=\right.\right. \\
& =E\left[\left(\varepsilon_{i}-E\left(\varepsilon_{i}\right)\right) \varepsilon_{j}-\left(\varepsilon_{i}-E\left(\varepsilon_{i}\right)\right) E\left(\varepsilon_{j}\right)\right] \\
& =E\left[\left(\varepsilon_{i} \varepsilon_{j}-E\left(\varepsilon_{i}\right) \varepsilon_{j}\right]=E\left(\varepsilon_{i} \varepsilon_{j}\right)-E\left(\varepsilon_{i}\right) E\left(\varepsilon_{j}\right)\right. \\
& =E\left(\varepsilon_{i} \varepsilon_{j}\right)
\end{aligned}
$$

by the use of the rules for expectation and assumption b : $E\left(\varepsilon_{i}\right)=0$. So assumption d. can be written as $E\left(\varepsilon_{i} \varepsilon_{j}\right)=0 \forall i \neq j$.
2.

$$
\begin{aligned}
E\left(Y_{i}\right) & =E\left[\alpha+\beta_{1}\left(X_{i}-\bar{X}\right)+\varepsilon_{i}\right]=\alpha+\beta_{1}\left(X_{i}-\bar{X}\right)+E\left(\varepsilon_{i}\right) \\
& =\alpha+\beta_{1}\left(X_{i}-\bar{X}\right), \text { using b: } E\left(\varepsilon_{i}\right)=0
\end{aligned}
$$

Of course, by the same reasoning:

$$
E\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i}
$$

if we use the original form of the equation: $Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}$.

$$
\begin{aligned}
\operatorname{Var}\left(Y_{i}\right) & =\operatorname{Var}\left[\alpha+\beta_{1}\left(X_{i}-\bar{X}\right)+\varepsilon_{i}\right] \\
& =\operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2} \forall i, \text { using } \mathrm{c} . \\
\operatorname{Cov}\left(Y_{i}, Y_{j}\right) & =E\left[\left(Y_{i}-E\left(Y_{i}\right)\right)\left(Y_{j}-E\left(Y_{j}\right)\right)\right] \\
& =E\left[\left(\varepsilon_{i} \varepsilon_{j}\right)\right] \\
& =0 \forall i \neq j \text { using d. }
\end{aligned}
$$

