Supplementary lecture note

1. Modeling relationships between the rv's X and Y

We saw in the lecture that when modeling a relationship between two random variables (rv's), X and Y (trying to explain Y by X), it is sometimes a good idea to start with the right side of

$$
\begin{equation*}
f(x, y)=f_{c}(y \mid x) f_{X}(x) \tag{1}
\end{equation*}
$$

(where $f(x, y)$ is the joint pdf of $(X, Y), f_{c}(y \mid x)$ is the conditional pdf of $(Y \mid X=x)$, X being fixed to a value x, and $f_{X}(x)$ the marginal pdf of X.)

There are, however, also cases where the modelling is done directly from the left side of the factorization. Starting from the left side of (1), a linear relationship between X and Y is sometimes proposed directly as

$$
\begin{equation*}
Y=\alpha+\beta X+e \tag{2}
\end{equation*}
$$

where the random error term, e, is uncorrelated with X, has expectation, $E(e)=0$, and constant variance, $\operatorname{var}(e)=\sigma_{e}^{2}$.

As clarified by Harald Cramér in his famous textbook from 1945, Mathematical Methods of Statistics, the relation (2) should not be taken as an (additional) assumption since it actually follows (is true) from any model for $f(x, y)$, (as long as moments up to second order exist) - which will be shown as follows:
(3) Model: Let (X, Y) have a joint distribution given by $f(x, y)$, such that expectations, variances and covariance exist. Write them as the following five population quantities

$$
\begin{aligned}
& E(X)=\mu_{X}, \quad E(Y)=\mu_{Y}, \quad \operatorname{var}(X)=\sigma_{X}^{2}, \quad \operatorname{var}(Y)=\sigma_{Y}^{2}, \text { and } \\
& \operatorname{cov}(X, Y)=\sigma_{X Y} .
\end{aligned}
$$

I will show that the statement (2) is automatically valid in model (3) without extra assumptions:
(4) Define ${ }^{1} \alpha$ and β by: $\quad \beta \stackrel{\text { Def }}{=} \frac{\sigma_{X Y}}{\sigma_{X}^{2}}$ and $\alpha \stackrel{\text { Def }}{=} \mu_{Y}-\beta \mu_{X}$

[^0]After this, define the rv, e, by: $\quad e \stackrel{\text { Def }}{=} Y-\alpha-\beta X$

From this we have

$$
\begin{equation*}
Y=\alpha+\beta X+e \tag{6}
\end{equation*}
$$

Now the rv, e, can be interpreted as an error term in the sense of (2), since we shall prove that $E(e)=0$ and $\operatorname{cov}(e, X)=0$:

Proof of $E(e)=0$ and $\operatorname{cov}(e, X)=0$:
We find from STAT1 -rules

$$
E(e)=E(Y-\alpha-\beta X)=\mu_{Y}-\alpha-\beta \mu_{X} \stackrel{(4)}{=} \mu_{Y}-\left(\mu_{Y}-\beta \mu_{X}\right)-\beta \mu_{X}=0
$$

From this we get

$$
\begin{aligned}
& \operatorname{cov}(e, X)=E(e X)-E(e) \cdot E(X)=E(e X)=E((Y-\alpha-\beta X) \cdot X)= \\
& =E\left(X Y-\alpha X-\beta X^{2}\right)=E(X Y)-\alpha \mu_{X}-\beta E\left(X^{2}\right)
\end{aligned}
$$

Substituting for α and β and using that $E(X Y)=\operatorname{cov}(X, Y)+E(X) \cdot E(Y)=\sigma_{X Y}+\mu_{X} \mu_{Y}$, and $E\left(X^{2}\right)=\sigma_{X}^{2}+\mu_{X}^{2}$, we get

$$
\operatorname{cov}(e, X)=\sigma_{X Y}+\mu_{X} \mu_{Y}-\left(\mu_{Y}-\frac{\sigma_{X Y}}{\sigma_{X}^{2}} \mu_{X}\right) \cdot \mu_{X}-\frac{\sigma_{X Y}}{\sigma_{X}^{2}}\left(\sigma_{X}^{2}+\mu_{X}^{2}\right)=\cdots=0 \quad \text { End of proof. }
$$

So the conditions in (2) are automatically fulfilled.
We also need an expression for $\sigma_{e}^{2}=\operatorname{Var}(e)$. Having established that e and X are uncorrelated, we have

$$
\sigma_{Y}^{2}=\operatorname{var}(Y)=\operatorname{var}(\alpha+\beta X+e)=\beta^{2} \operatorname{var}(X)+\operatorname{var}(e)=\beta^{2} \sigma_{X}^{2}+\sigma_{e}^{2}
$$

Hence, introducing the correlation between X and $Y, \rho=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}$, we find

$$
\sigma_{e}^{2}=\sigma_{Y}^{2}-\beta^{2} \sigma_{X}^{2}=\sigma_{Y}^{2}-\frac{\sigma_{X Y}^{2}}{\sigma_{X}^{4}} \sigma_{X}^{2}=\sigma_{Y}^{2}-\frac{\sigma_{X Y}^{2}}{\sigma_{X}^{2}}=\sigma_{Y}^{2}-\frac{\sigma_{X Y}^{2}}{\sigma_{X}^{2} \sigma_{Y}^{2}} \cdot \sigma_{Y}^{2}=\sigma_{Y}^{2}-\rho^{2} \sigma_{Y}^{2}
$$

or

$$
\begin{equation*}
\sigma_{e}^{2}=\sigma_{Y}^{2}\left(1-\rho^{2}\right) \tag{7}
\end{equation*}
$$

(7) is a famous relationship that, among other things, offers an interpretion of ρ^{2} (in the population) as a measure of the fraction of the total variance, σ_{Y}^{2}, of Y that is explained by the linear relationship (2).

Note that another bonus that we get from (7) is a proof that $-1 \leq \rho \leq 1 \quad$ (assuming $\operatorname{var}(Y)>0)$. This follows trivially since $\sigma_{e}^{2}=\operatorname{var}(e) \geq 0$ implies $\rho^{2} \leq 1$.

2. Interpretation of (2)

Cramér derived (2) as the solution of a minimization problem. He showed that the values given of α and β, minimize the function, $Q(\alpha, \beta)=E\left[(Y-\alpha-\beta X)^{2}\right]$ (assuming (3) only), and that the minimizing values are unique ${ }^{2}$. This represents one interpretation. I will give you another supplementary interpretation.

Write the linear part of (2) as $g(X)$, where g is the linear function, $g(x)=\alpha+\beta x$. As shown, this function is always well defined under model (3). A common misunderstanding appears to be a tendency to interprete $g(x)$ as the conditional expectation, $\mu(x)=E(Y \mid x)$, which is wrong in general. To claim that $g(x)=\mu(x)$, requires additional assumptions in model (3). In general $\mu(x)$ does not have to be linear at all, as examples 1 and 2 below, show. However, there is a certain relationship between the two functions $\mu(x)$ and $g(x)$. To see this, make first $\mu(x)$ random by replacing x by the rv X, leading to the rv, $\mu(X)$. Then, add and subtract this in Q, giving

$$
\begin{aligned}
& Q(\alpha, \beta)=E\left[(Y-g(X))^{2}\right]=E\left[(Y-\mu(X)+\mu(X)-g(X))^{2}\right]= \\
& =E\left[(Y-\mu(X))^{2}\right]+2 E[(Y-\mu(X))(\mu(X)-g(X))]+E\left[(\mu(X)-g(X))^{2}\right]
\end{aligned}
$$

Using the theorem of iterated expectations, we can show that the first term is equal to, $E\left[\sigma^{2}(X)\right]$, where $\sigma^{2}(x)=\operatorname{var}(Y \mid x)$ is the conditional variance function.
[You may try to show this as an exercise. Write first
$E\left[(Y-\mu(X))^{2}\right]=E\left[E\left((Y-\mu(X))^{2} \mid X\right)\right]$ and use the two-step approach described in the lecture. On step one, find the function of x,

$$
E\left((Y-\mu(X))^{2} \mid X=x\right)=E\left((Y-\mu(x))^{2} \mid x\right)=\frac{\text { def }}{=} \operatorname{var}(Y \mid x)=\sigma^{2}(x), \text { noting that fixing } X \text { to the }
$$

value x, turns, the rv $\mu(X)$ into the constant value, $\mu(x)=E(Y \mid x)$. On step two, replace x by the rv X and take expectations.]

Similarly, the second term in Q, can be shown to be 0 . Hence, we can write

[^1]$$
Q(\alpha, \beta)=E\left[\sigma^{2}(X)\right]+E\left[(\mu(X)-\alpha-\beta X)^{2}\right]
$$

Since the minimization Q with respect to α and β does not affect the first term, we can now interprete the function $g(x)$ as the best linear approximation to $\mu(x)$ in an expected squared error sense.

3 Estimation of $g(x)=\alpha+\beta x$ in (2)

The joint distribution of (X, Y), determined by the joint pdf, $f(x, y)$, may be called the population distribution (as suggested by Ragnar in the lecture), and we want information on this distribution based on a representative sample (data) from the population expressed as " n observations ${ }^{3}$, $\left(x_{1}^{o}, y_{1}^{o}\right),\left(x_{2}^{o}, y_{2}^{o}\right), \ldots,\left(x_{n}^{o}, y_{n}^{o}\right)$ of (X, Y), sampled independently". A model for this is the iid model where we consider the observations as observations of n random pairs, $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots,\left(X_{n}, Y_{n}\right)$ assumed to be iid pairs. This means that we assume the n pairs to be independent random pairs, identically distributed as (X, Y), and with the common pdf, $f(x, y)$.

Then, using the construction of (2) for each pair ${ }^{4}$, we get the (simple regression) model for data (known from several books),

$$
Y_{i}=\alpha+\beta X_{i}+e_{i}, \quad i=1,2, \ldots, n
$$

where the error terms, $e_{1}, e_{2}, \ldots, e_{n}$, are independent and identically distributed with expectation 0 and constant variance, $\operatorname{var}\left(e_{i}\right)=\sigma_{e}^{2}$. This specification can be well treated (estimated) by the OLS method.

4. Example 1

We can construct the joint pdf, $f(x, y)$, for the random pair, (X, Y) using the factorization, $f(x, y)=f_{c}(y \mid x) f_{X}(x)$, (see (1)), where the two factors on the right can be modeled as we wish - independently of each other. For example, suppose that X is uniformly distributed over the interval $[0,1]$ with pdf

$$
f_{X}(x)= \begin{cases}1 & \text { for } 0 \leq x \leq 1 \\ 0 & \text { for } x \text { outside }[0,1]\end{cases}
$$

This implies that, $E(X)=\mu_{X}=1 / 2$, and $\operatorname{var}(X)=\sigma_{X}^{2}=1 / 12$.

[^2]Fixing X to a number x between 0 and 1, we assume that $Y \mid(X=x)$ is normally distributed with expectation, $2 x^{2}$, and variance 1 (in short $(Y \mid X=x) \sim N\left(2 x^{2}, 1\right)$). This implies that the (true) regression function is $\mu(x)=E(Y \mid x)=2 x^{2}$ (well defined for x in [0,1] only since the conditional pdf, $f_{c}(y \mid x)$, is not defined for x outside $[0,1]$).
[Small technical point: Note that, even if $f_{c}(y \mid x)$ is not defined for x outside [0,1], we define (as is usual in practice) $f(x, y)=f_{c}(y \mid x) f_{X}(x)=0$ for x outside [0,1], since $f_{X}(x)=0$ there. Hence, the joint pdf becomes

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}\left(y-2 x^{2}\right)^{2}} & \text { for } 0 \leq x \leq 1 \text { and }-\infty<y<\infty \\
0 & \text { for any }(x, y) \text { where } x \text { is outside }[0,1]
\end{array}\right.
$$

Note that $f(x, y)$ is concentrated (i.e., $>0)$ in the strip which goes all along the y -axis determined by $0 \leq x \leq 1$ and 0 outside the strip. Note also that (X, Y) is not jointly normally distributed (the joint normal pdf is never 0 and would imply that both marginal distributions are normal).]

Hence the true regression function, $\mu(x)$, is not linear (but part of a parabola, see fig. 1 below). To determine the best linear approximation described in (2), we need as in (3), $E(X)=\mu_{X}=1 / 2, \quad E(Y)=\mu_{Y}, \quad \operatorname{var}(X)=\sigma_{X}^{2}=1 / 12, \quad \operatorname{var}(Y)=\sigma_{Y}^{2}, \quad$ and $\quad \operatorname{cov}(X, Y)=\sigma_{X Y}$. The obvious tool here is the iterated expectation theorem:

$$
\begin{aligned}
& \mu_{Y}=E(Y)=E[E(Y \mid X)]=E\left[2 X^{2}\right]=2\left[\operatorname{var}(X)+(E(X))^{2}\right]=2\left(\frac{1}{12}+\frac{1}{4}\right)=\frac{2}{3} \\
& \sigma_{X Y}=\operatorname{cov}(X, Y)=E(X Y)-\mu_{X} \mu_{Y}=E(X Y)-\frac{1}{3} \\
& E(X Y)=E[E(X Y \mid X)]=E[X \cdot E(Y \mid X)]=E\left[X \cdot 2 X^{2}\right]=2 E\left[X^{3}\right]
\end{aligned}
$$

[Note. To understand this manipulation, it is best to use the two-stage approach described in the lecture. Step 1: Find the conditional function behind the inner expectation first. $c(x)=E(X Y \mid X=x)=E(x Y \mid X=x)=x \cdot E(Y \mid x)$. This works since the value x is just a constant in the distribution of $Y \mid(X=x)$. Hence, $c(x)=x E(Y \mid x)=2 x^{3}$. Step 2: Replace x by the $\operatorname{rv} X$ in $c(x)$ and take expectation: $c(X)=X \cdot E(Y \mid X)=2 X^{3}$. The theorem of iterated expectations tells us that taking the expectation of $c(X)$ gives us $E(X Y)$.]

$$
E(X Y)=2 E\left(X^{3}\right)=2 \int_{0}^{1} x^{3} f_{X}(x) d x=2 \int_{0}^{1} x^{3} d x=2 \cdot \frac{1}{4}=\frac{1}{2}
$$

Hence

$$
\sigma_{X Y}=E(X Y)-\frac{1}{3}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}
$$

$$
\sigma_{Y}^{2}=\operatorname{var}(Y)=E[\operatorname{var}(Y \mid X)]+\operatorname{var}[E(Y \mid X)]=E[1]+\operatorname{var}\left[2 X^{2}\right]=1+4 \cdot \operatorname{var}\left(X^{2}\right)
$$

Hence

$$
\sigma_{Y}^{2}=1+4\left(E\left[X^{4}\right]-\left(E\left[X^{2}\right]\right)\right)=1+4\left(\int_{0}^{1} x^{4} \cdot 1 d x-\left(\int_{0}^{1} x^{2} \cdot 1 d x\right)^{2}\right)=1+4 \cdot \frac{4}{45}=1+\frac{16}{45}
$$

We can now find the best linear approximation, $g(x)=\alpha+\beta x$, to $\mu(x)=E(Y \mid x)$, where

$$
\begin{aligned}
& \beta=\frac{\sigma_{X Y}}{\sigma_{X}^{2}}=\frac{1 / 6}{1 / 12}=2 \\
& \alpha=\mu_{Y}-\beta \mu_{X}=\frac{2}{3}-2 \cdot \frac{1}{2}=-\frac{1}{3}
\end{aligned}
$$

or

$$
g(x)=-\frac{1}{3}+2 x
$$

Figure $1 \quad g(x)=\alpha+\beta x$ and regression function $\mu(x)=E(Y \mid x)$

Stata command: twoway (function $\mathrm{y}=2^{*} \mathrm{x}^{\wedge} 2$, range $\left(\begin{array}{ll}0 & 1) \text {) (function } \mathrm{y}=-1 / 3+2^{*} \mathrm{x} \text {, range }\left(\begin{array}{ll}0 & 1\end{array}\right) \text {) }{ }^{\text {(}} \text { (}\end{array}\right.$

Example 2 Exercise

A. Repeat the calculations as in example 1, now assuming
(i) $\quad X \sim$ uniformly distributed over [0, 2]
[implying, $f_{x}(x)=1 / 2$ for $0 \leq x \leq 2, \mu_{x}=E(X)=1$, and $\sigma_{x}^{2}=\operatorname{var}(X)=1 / 3$]
(ii) $\quad Y \mid x \sim N\left(2(x-1)^{2}, x^{2}\right)$
[implying, $\mu(x)=E(Y \mid x)=2(x-1)^{2}$ and $\sigma^{2}(x)=\operatorname{var}(Y \mid x)=x^{2}$]
Hint. Verify that $\mu_{Y}=\frac{2}{3}, \quad \sigma_{Y}^{2}=\frac{76}{45}, \quad \sigma_{X Y}=-\frac{1}{3}$.
Developing σ_{Y}^{2}, you may need to find $\operatorname{var}\left[(X-1)^{2}\right]=E\left[(X-1)^{4}\right]-\left(E\left[(X-1)^{2}\right]\right)^{2}$.
Note that, for example, $E\left[(X-1)^{4}\right]=\int_{0}^{2}(x-1)^{4} f_{X}(x) d x=\int_{0}^{2}(x-1)^{4} \cdot \frac{1}{2} d x=\frac{1}{5}$
B. Find the best linear approximation, $g(x)=\alpha+\beta x$, to the true regression, $\mu(x)=E(Y \mid x)$, and plot both functions in the same graph.
C. How would you go about to simulate (make the computer draw) n independent observations of the random pair, (X, Y) ? (Hint: Utilize the right side of (1).)
(Try it (!), using (e.g.) Excel or Stata for $n=50$, and make a scatter plot.)

[^0]: ${ }^{1}$ Note that the definition of α and β, which are population quantities, corresponds exactly to the OLS estimates based on a sample of observations of (X, Y).

[^1]: ${ }^{2}$ Actually he showed (2) in a more general setting with an arbitrary number of explanatory variables, and not only one as here.

[^2]: ${ }^{3}$ The upper index ${ }^{0}$ signifying that the observations are concrete numbers.
 ${ }^{4}$ Note that, since all the pairs have the same distribution, α and β will be the same for each pair.

