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This lecture:

Based on the references and the model specification in Lecture 9:

I Statistical properties of estimators

I t-tests for the multivariate case
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OLS estimates (expressions) I

For

Yi = β0 + β1X1i + β2X2i + ε i i = 1, 2, . . . , n (1)

we have the following sample estimates

β̂1 =
σ̂2
X2

σ̂Y ,X1 − σ̂Y ,X2 σ̂X1,X2

σ̂2
X1

σ̂2
X2
− σ̂2

X1,X2

(2)

β̂2 =
σ̂2
X1

σ̂Y ,X2 − σ̂Y ,X1 σ̂X1,X2

σ̂2
X1

σ̂2
X2
− σ̂2

X1,X2

(3)

where σ̂2
Xj
(j = 1, 2), σ̂Y ,Xj

(j = 1, 2) and σ̂X1,X2 are empirical
variances and covariances.
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OLS estimates (expressions) II

Estimates for the two versions of the intercepts:

β̂0 = Ȳ + β̂1X 1 + β̂2X 2

α̂ = Ȳ
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Absence of perfect sample collinearity I

It is clear that (2) for β̂1 and (3) for β̂2 require

M := σ̂2
X1

σ̂2
X2
− σ̂2

X1,X2
= σ̂2

X1
σ̂2
X2
(1− r2X1X2

) > 0

Cannot have perfect empirical correlation between the two
regressors. Must have:

σ̂2
X1

> 0, and σ̂2
X2

> 0 and r2X1X2
< 1⇐⇒ −1 < rX1X2 < 1

I If any one of these conditions should fail, we have what the
textbooks call exact (or perfect) collinearity.

I Absence of perfect collinearity is a requirement about the
nature of the sample.
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Absence of perfect sample collinearity II

I The case of rX1X2 = 0 also has a name. It is called perfect
orthogonality. It does not create any problems in (2) or (3).

I In practice, the relevant case is −1 < rX1X2 < 1, i.e. a degree
of collinearity (not perfect)
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Unbiasedness

Expectation I

I Conditional on the values of X1 and X2, β̂1 is still a random
variable because ε i and Yi are random variables.

I In that interpretation β̂1, β̂2, and β̂0 are estimators and we
want to know their expectation, variance, and whether they
are consistent or not.

I Start by considering E (β̂1 | X1,X2), i.e., conditional on all the
values of the two regressors.
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Unbiasedness

Expectation II
I Write β̂1 as

β̂1 =

(
σ̂2
X2

σ̂Y ,X1 − σ̂Y ,X2 σ̂X1,X2

)
M

then E (β̂1 | X1,X2) becomes

E (β̂1 | X1,X2) =
σ̂2
X2

M
E (σ̂Y ,X1 | X1,X2)−

σ̂X1,X2

M
E (σ̂Y ,X2 | X1,X2)

(4)

I Evaluate this in class, in order to show that

E (β̂j ) = E
[
E (β̂j | X1,X2)

]
= βj , j = 1, 2 (5)

since E (ε i | X1,X2) = 0 ∀ i is generic for the regression
model.
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Variance of β̂j

Variance I

Find that (under the classical assumptions of the model):

Var(β̂j | X1,X2) =
σ2

nσ̂2
Xj

[
1− r2X1,X2

] , j = 1, 2 (6)

and this also holds unconditionally.

I The BLUE property of the OLS estimators extends to the
multivariate case (will no show)

I The variance (6) is low in samples that are informative about
the “separate contributions” from X1 and X2:

I σ̂2
Xj

high

I r2X1,X2
low
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Variance of β̂j

Variance II

I Var(β̂j ) is lowest when r2X1,X2
= 0, the regressors are

orthogonal.

I Do not become tempted to say that “in order to estimate the
marginal effect of X2 on Y very precisely we should drop X1

from the model”. That will give a variance expression

σ′2

nσ̂2
Xj

but σ′2 > σ2 in most cases!. (And there will be other
problems as well).
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Covariance between β̂1 and β̂2

Covariance I

In many applications weed to know Cov(β̂1, β̂2).
It is easiest to find by starting from the second normal equation

β̂1σ̂2
X1

+ β̂2σ̂X1,X2 = σ̂YX1

When we take (conditional) variance on both sides, we get

σ̂4
X1
Var(β̂1)+ σ̂2

X1X2
Var(β̂2)+ 2σ̂2

X1
σ̂X1,X2Cov

(
β̂1, β̂2

)
=

1

n2
Var(σ̂YX1)

The rhs we have from before:

n−2Var(σ̂YX1) = n−2
σ2

n
σ̂2
X1

= n−1σ2σ̂2
X1
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Covariance between β̂1 and β̂2

Covariance II

Insertion of expressions for Var(β̂1) and Var(β̂2), solving for
Cov

(
β̂1, β̂2

)
gives

Cov
(

β̂1, β̂2

)
= −σ2

n

σ̂X1X2

M

Algebra details in note on web-page.
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Consistency

Consistency of estimators I

Show for β̂1

plim
(

β̂1

)
= plim

((
σ̂2
X2

σ̂Y ,X1 − σ̂Y ,X2 σ̂X1,X2

)
M

)

=
plim

(
σ̂2
X2
) plim(σ̂Y ,X1)− plim(σ̂Y ,X2) plim(σ̂X1,X2

)
plimM

Based on the assumptions of the regression model:

plim(σ̂2
Xj
) = σ2

Xj
j = 1, 2

plim(σ̂X1,X2) = σX1X2

plimM = σ2
X1

σ2
X2
− σ2

X1,X2
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Consistency

Consistency of estimators II

plim(σ̂Y ,X1) = β1σ2
X1

+ β2σX1X2 + plim

[
1

n

n

∑
i=1

ε i (X1i − X̄1)

]
= β1σ2

X1
+ β2σX1X2

plim(σ̂Y ,X2) = β1σX1X2 + β2σ2
X2

plim
(

β̂1

)
=

σ2
X2

[
β1σ2

X1
+ β2σX1X2

]
−
[
β1σX1X2 + β2σ2

X2

]
σX1,X2

σ2
X1

σ2
X2
− σ2

X1,X2

=
β1(σ2

X2
σ2
X1
− σ2

X1X2
) + β2σ2

X2
σX1X2 − β2σ2

X2
σX1,X2

σ2
X1

σ2
X2
− σ2

X1,X2

= β1

The OLS estimators β̂0 and β̂2 are also consistent
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Estimated standard errors and t-values I

I Just like in simple regression we need to replace
√

Var(β̂j )

from (6) by

ŝe(β̂j ) =

√√√√ σ̂2

nσ̂2
Xj

[
1− r2X1,X2

]
where σ̂2 is an estimator.

I In the same way as in simple regression we make the
normality assumption about the disturbances.
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Estimated standard errors and t-values II

I Also, by the same logic as before we choose the unbiased
estimator

σ̂2 =
∑n

i=1 ε̂2i
n− 3

. (7)

where ε̂ i are the OLS residuals from the bivariate regression
model.

I Note n− 3 instead of n− 2 since we have now 3 exact
relationships between the n residuals.

I Again, in direct parallel to single regressor model we now have

T =
β̂j − E (β̂j )

ŝe(β̂j )
∼ t(n− 3), j = 1, 2. (8)
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Estimated standard errors and t-values III

I which is used in hypotheses testing an in the different forms
of interval estimation.

I Some examples of null hypotheses that can be tested with
t-tests:

I H0: β1 = β0
1

I H0: β2 = β0
2

I H0: β1 + β2 = a0

In class: Back to Andy’s
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