The multiple regression model (II)

Ragnar Nymoen
University of Oslo

14 February 2013

This lecture:

Based on the references and the model specification in Lecture 9:

- Statistical properties of estimators
- t-tests for the multivariate case

OLS estimates (expressions) I

For

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\varepsilon_{i} i=1,2, \ldots, n \tag{1}
\end{equation*}
$$

we have the following sample estimates

$$
\begin{align*}
& \hat{\beta}_{1}=\frac{\hat{\sigma}_{X_{2}}^{2} \hat{\sigma}_{Y, X_{1}}-\hat{\sigma}_{Y, X_{2}} \hat{\sigma}_{X_{1}, X_{2}}}{\hat{\sigma}_{X_{1}}^{2} \hat{\sigma}_{X_{2}}^{2}-\hat{\sigma}_{X_{1}, X_{2}}^{2}} \tag{2}\\
& \hat{\beta}_{2}=\frac{\hat{\sigma}_{X_{1}}^{2} \hat{\sigma}_{Y, X_{2}}-\hat{\sigma}_{Y, X_{1}} \hat{\sigma}_{X_{1}, X_{2}}}{\hat{\sigma}_{X_{1}}^{2} \hat{\sigma}_{X_{2}}^{2}-\hat{\sigma}_{X_{1}, X_{2}}^{2}} \tag{3}
\end{align*}
$$

where $\hat{\sigma}_{X_{j}}^{2}(j=1,2), \hat{\sigma}_{Y, X_{j}}(j=1,2)$ and $\hat{\sigma}_{X_{1}, X_{2}}$ are empirical variances and covariances.

OLS estimates (expressions) II

Estimates for the two versions of the intercepts:

$$
\begin{aligned}
\hat{\beta}_{0} & =\bar{Y}+\hat{\beta}_{1} \bar{X}_{1}+\hat{\beta}_{2} \bar{X}_{2} \\
\hat{\alpha} & =\bar{Y}
\end{aligned}
$$

Absence of perfect sample collinearity I

It is clear that (2) for $\hat{\beta}_{1}$ and (3) for $\hat{\beta}_{2}$ require

$$
M:=\hat{\sigma}_{X_{1}}^{2} \hat{\sigma}_{X_{2}}^{2}-\hat{\sigma}_{X_{1}, X_{2}}^{2}=\hat{\sigma}_{X_{1}}^{2} \hat{\sigma}_{X_{2}}^{2}\left(1-r_{X_{1} X_{2}}^{2}\right)>0
$$

Cannot have perfect empirical correlation between the two regressors. Must have:

$$
\hat{\sigma}_{X_{1}}^{2}>0, \text { and } \hat{\sigma}_{X_{2}}^{2}>0 \text { and } r_{X_{1} X_{2}}^{2}<1 \Longleftrightarrow-1<r_{X_{1} X_{2}}<1
$$

- If any one of these conditions should fail, we have what the textbooks call exact (or perfect) collinearity.
- Absence of perfect collinearity is a requirement about the nature of the sample.

Absence of perfect sample collinearity II

- The case of $r_{X_{1} X_{2}}=0$ also has a name. It is called perfect orthogonality. It does not create any problems in (2) or (3).
- In practice, the relevant case is $-1<r_{X_{1} X_{2}}<1$, i.e. a degree of collinearity (not perfect)

Expectation I

- Conditional on the values of X_{1} and $X_{2}, \hat{\beta}_{1}$ is still a random variable because ε_{i} and Y_{i} are random variables.
- In that interpretation $\hat{\beta}_{1}, \hat{\beta}_{2}$, and $\hat{\beta}_{0}$ are estimators and we want to know their expectation, variance, and whether they are consistent or not.
- Start by considering $E\left(\hat{\beta}_{1} \mid X_{1}, X_{2}\right)$, i.e., conditional on all the values of the two regressors.

Expectation II

- Write $\hat{\beta}_{1}$ as

$$
\hat{\beta}_{1}=\frac{\left(\hat{\sigma}_{X_{2}}^{2} \hat{\sigma}_{Y, X_{1}}-\hat{\sigma}_{Y, X_{2}} \hat{\sigma}_{X_{1}, X_{2}}\right)}{M}
$$

then $E\left(\hat{\beta}_{1} \mid X_{1}, X_{2}\right)$ becomes
$E\left(\hat{\beta}_{1} \mid X_{1}, X_{2}\right)=\frac{\hat{\sigma}_{X_{2}}^{2}}{M} E\left(\hat{\sigma}_{Y, X_{1}} \mid X_{1}, X_{2}\right)-\frac{\hat{\sigma}_{X_{1}, X_{2}}}{M} E\left(\hat{\sigma}_{Y, X_{2}} \mid X_{1}, X_{2}\right)$

- Evaluate this in class, in order to show that

$$
\begin{equation*}
E\left(\hat{\beta}_{j}\right)=E\left[E\left(\hat{\beta}_{j} \mid X_{1}, X_{2}\right)\right]=\beta_{j}, j=1,2 \tag{5}
\end{equation*}
$$

since $E\left(\varepsilon_{i} \mid X_{1}, X_{2}\right)=0 \forall i$ is generic for the regression model.

Variance I

Find that (under the classical assumptions of the model):

$$
\begin{equation*}
\operatorname{Var}\left(\hat{\beta}_{j} \mid X_{1}, X_{2}\right)=\frac{\sigma^{2}}{n \hat{\sigma}_{X_{j}}^{2}\left[1-r_{X_{1}, X_{2}}^{2}\right]}, j=1,2 \tag{6}
\end{equation*}
$$

and this also holds unconditionally.

- The BLUE property of the OLS estimators extends to the multivariate case (will no show)
- The variance (6) is low in samples that are informative about the "separate contributions" from X_{1} and X_{2} :
- $\hat{\sigma}_{X_{j}}^{2}$ high
- $r_{X_{1}, X_{2}}^{2}$ low

Variance II

- $\operatorname{Var}\left(\hat{\beta}_{j}\right)$ is lowest when $r_{X_{1}, X_{2}}^{2}=0$, the regressors are orthogonal.
- Do not become tempted to say that "in order to estimate the marginal effect of X_{2} on Y very precisely we should drop X_{1} from the model". That will give a variance expression

$$
\frac{\sigma^{\prime 2}}{n \hat{\sigma}_{X_{j}}^{2}}
$$

but $\sigma^{\prime 2}>\sigma^{2}$ in most cases!. (And there will be other problems as well).

Covariance I

In many applications weed to know $\operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)$.
It is easiest to find by starting from the second normal equation

$$
\hat{\beta}_{1} \hat{\sigma}_{X_{1}}^{2}+\hat{\beta}_{2} \hat{\sigma}_{X_{1}, X_{2}}=\hat{\sigma}_{Y X_{1}}
$$

When we take (conditional) variance on both sides, we get

$$
\hat{\sigma}_{X_{1}}^{4} \operatorname{Var}\left(\hat{\beta}_{1}\right)+\hat{\sigma}_{X_{1} X_{2}}^{2} \operatorname{Var}\left(\hat{\beta}_{2}\right)+2 \hat{\sigma}_{X_{1}}^{2} \hat{\sigma}_{X_{1}, X_{2}} \operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)=\frac{1}{n^{2}} \operatorname{Var}\left(\hat{\sigma}_{Y X_{1}}\right)
$$

The rhs we have from before:

$$
n^{-2} \operatorname{Var}\left(\hat{\sigma}_{Y X_{1}}\right)=n^{-2} \frac{\sigma^{2}}{n} \hat{\sigma}_{X_{1}}^{2}=n^{-1} \sigma^{2} \hat{\sigma}_{X_{1}}^{2}
$$

Covariance II

Insertion of expressions for $\operatorname{Var}\left(\hat{\beta}_{1}\right)$ and $\operatorname{Var}\left(\hat{\beta}_{2}\right)$, solving for $\operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)$ gives

$$
\operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)=-\frac{\sigma^{2}}{n} \frac{\hat{\sigma}_{X_{1} X_{2}}}{M}
$$

Algebra details in note on web-page.

Consistency of estimators I

Show for $\hat{\beta}_{1}$

$$
\begin{aligned}
\operatorname{plim}\left(\hat{\beta}_{1}\right) & =\operatorname{plim}\left(\frac{\left(\hat{\sigma}_{X_{2}}^{2} \hat{\sigma}_{Y, X_{1}}-\hat{\sigma}_{Y, X_{2}} \hat{\sigma}_{X_{1}, X_{2}}\right)}{M}\right) \\
& =\frac{\operatorname{plim}\left(\hat{\sigma}_{X_{2}}^{2}\right) \operatorname{plim}\left(\hat{\sigma}_{Y, X_{1}}\right)-\operatorname{plim}\left(\hat{\sigma}_{Y, X_{2}}\right) \operatorname{plim}\left(\hat{\sigma}_{X_{1}, X_{2}}\right)}{\operatorname{plim} M}
\end{aligned}
$$

Based on the assumptions of the regression model:

$$
\begin{aligned}
\operatorname{plim}\left(\hat{\sigma}_{X_{j}}^{2}\right) & =\sigma_{X_{j}}^{2} j=1,2 \\
\operatorname{plim}\left(\hat{\sigma}_{X_{1}, X_{2}}\right) & =\sigma_{X_{1} X_{2}} \\
\operatorname{plim} M & =\sigma_{X_{1}}^{2} \sigma_{X_{2}}^{2}-\sigma_{X_{1}, X_{2}}^{2}
\end{aligned}
$$

Consistency of estimators II

$$
\begin{aligned}
\operatorname{plim}\left(\hat{\sigma}_{Y, X_{1}}\right) & =\beta_{1} \sigma_{X_{1}}^{2}+\beta_{2} \sigma_{X_{1} X_{2}}+\operatorname{plim}\left[\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}\left(X_{1 i}-\bar{X}_{1}\right)\right] \\
& =\beta_{1} \sigma_{X_{1}}^{2}+\beta_{2} \sigma_{X_{1} X_{2}} \\
\operatorname{plim}\left(\hat{\sigma}_{Y, X_{2}}\right) & =\beta_{1} \sigma_{X_{1} X_{2}}+\beta_{2} \sigma_{X_{2}}^{2}
\end{aligned}
$$

$$
\operatorname{plim}\left(\hat{\beta}_{1}\right)=\frac{\sigma_{X_{2}}^{2}\left[\beta_{1} \sigma_{X_{1}}^{2}+\beta_{2} \sigma_{X_{1} X_{2}}\right]-\left[\beta_{1} \sigma_{X_{1} X_{2}}+\beta_{2} \sigma_{X_{2}}^{2}\right] \sigma_{X_{1}, X_{2}}}{\sigma_{X_{1}}^{2} \sigma_{X_{2}}^{2}-\sigma_{X_{1}, X_{2}}^{2}}
$$

$$
=\frac{\beta_{1}\left(\sigma_{X_{2}}^{2} \sigma_{X_{1}}^{2}-\sigma_{X_{1} X_{2}}^{2}\right)+\beta_{2} \sigma_{X_{2}}^{2} \sigma_{X_{1} X_{2}}-\beta_{2} \sigma_{X_{2}}^{2} \sigma_{X_{1}, X_{2}}}{\sigma_{X_{1}}^{2} \sigma_{X_{2}}^{2}-\sigma_{X_{1}, X_{2}}^{2}}
$$

$$
=\beta_{1}
$$

The OLS estimators $\hat{\beta}_{0}$ and $\hat{\beta}_{2}$ are also consistent

Estimated standard errors and t-values I

- Just like in simple regression we need to replace $\sqrt{\operatorname{Var}\left(\hat{\beta}_{j}\right)}$ from (6) by

$$
\widehat{\operatorname{se}}\left(\hat{\beta}_{j}\right)=\sqrt{\frac{\hat{\sigma}^{2}}{n \hat{\sigma}_{X_{j}}^{2}\left[1-r_{X_{1}, X_{2}}^{2}\right]}}
$$

where $\hat{\sigma}^{2}$ is an estimator.

- In the same way as in simple regression we make the normality assumption about the disturbances.

Estimated standard errors and t-values II

- Also, by the same logic as before we choose the unbiased estimator

$$
\begin{equation*}
\hat{\sigma}^{2}=\frac{\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2}}{n-3} \tag{7}
\end{equation*}
$$

where $\hat{\varepsilon}_{i}$ are the OLS residuals from the bivariate regression model.

- Note $n-3$ instead of $n-2$ since we have now 3 exact relationships between the n residuals.
- Again, in direct parallel to single regressor model we now have

$$
\begin{equation*}
T=\frac{\hat{\beta}_{j}-E\left(\hat{\beta}_{j}\right)}{\widehat{\operatorname{se}}\left(\hat{\beta}_{j}\right)} \sim t(n-3), j=1,2 . \tag{8}
\end{equation*}
$$

Estimated standard errors and t-values III

- which is used in hypotheses testing an in the different forms of interval estimation.
- Some examples of null hypotheses that can be tested with t-tests:
- $H_{0}: \beta_{1}=\beta_{1}^{0}$
- $H_{0}: \beta_{2}=\beta_{2}^{0}$
- $H_{0}: \beta_{1}+\beta_{2}=a^{0}$

In class: Back to Andy's

