The multiple regression model (III)

Ragnar Nymoen

University of Oslo

26 February 2013

This lecture (no 11):

Based on the references and the *model specification* in Lecture 9 and 10:

- Remarks on "goodness of fit"
- ► The most common approaches to hypothesis testing in the multivariate model

Adjusted R squared I

. reg sales price advert

Source	SS	df	MS		Number of obs F(2, 72)	
Model Residual	1396.53921 1718.94281		269603 742057		Prob > F R-squared Adj R-squared	= 0.0000 = 0.4483
Total	3115.48202	74 42.1	011083		Root MSE	= 4.8861
sales	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
price advert _cons	-7.907856 1.862584 118.9136	1.095993 .6831955 6.351638	-7.22 2.73 18.72	0.000 0.008 0.000	-10.09268 .5006587 106.2519	-5.723034 3.224509 131.5754

- ► R-squared = 1396.53921/3115.48202 = 0.44826
- $ightharpoonup R^2$ is non-decrasing in the number of regressors included. Adj R^2 corrects for that:

Adjusted R squared II

▶ Adj R squared = $1 - \frac{1718.94281}{3115.48202} \cdot (\frac{(74-1)}{(74-2-1)}) = 0.43272$

$$\overline{R}^2 = 1 - \frac{\frac{1}{n-k-1}}{\frac{1}{n-1}} \frac{\sum_{i=1}^{n} \hat{\varepsilon}_i^2}{\sum_{i=1}^{n} (Y_i - \overline{Y})^2}.$$
 (1)

k= the number of explanatory variables including the intercept, equal to K-1 in HGL notation

▶ Both R² and Adj R² are descriptive measures of goodness-of-fit. They are not test statistics.

Adjusted R squared III

- Along with other information criteria, they can nevertheless be used as "tie breakers" between models that are equal in all other relevant aspects
- ➤ So we will remark briefly on that issue, (see HGL section 6.3.4 in particular; BN, kap 7.6.3-7.6.5)

Non-invariance of R-squared I

Assume that we estimate

$$sala_i = \beta_0 + \beta_1 price_i + \beta_2 advert_i + \varepsilon_i$$

where sala is a new lhs variable defined as $sala_i = sales_i - advert_i$

- ▶ We then know that OLS gives $\hat{\beta}_0 = 118.9136$, $\hat{\beta}_1 = -7.907856$, $\hat{\beta}_2 = 1.86 1 = 0.86258$
- All three standard errors are unchanged from the first regression
- Moreover, we know that RSS = 1718.94294 as in the original formulation
- ▶ But $R^2 = 0.424968$ which is different. What has happened?

Example: Andy's

Non-invariance of R-squared II

▶ R² is not invariant to *re-parameterizations* of the model (changes that do no affect the disturbance)

Measures of fit that are more invariant than R-sq I

reg sala price advert

Source	SS	df	MS
Model Residual	1270.35665 1718.94309	2 72	635.178327 23.8742096
Total	2989.29974	74	40.3959425

Number of obs = 75 F(2, 72) = 26.61 Prob > F = 0.0000 R-squared = 0.4250 Adj R-squared = 0.4090 Root MSE = 4.8861

sala	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
price	-7.907856	1.095993	-7.22	0.000	-10.09268	-5.723033
advert	.8625836	.6831955	1.26	0.211	4993417	2.224509
_cons	118.9136	6.351638	18.72	0.000	106.2519	131.5754

- ► Root MSE is unchanged. It is $\sqrt{\hat{\sigma}^2} = \sqrt{1718.94309/72} = \sqrt{23.874} = 4.8861$
- ▶ Hence, our estimate of σ^2 is a more invariant measure of fit than both R^2 and R^2 -adj

Measures of fit that are more invariant than R-sq II

 $\hat{\sigma}$ is not invariant to how the data is scaled. The *coefficient of* variation

$$\frac{\hat{\sigma}}{\overline{Y}}$$
100

is often reported. It is the *residual standard deviation* as a percent of the level of the dependent variable (Y)

▶ If the data have been log-transformed, $\hat{\sigma} \cdot 100$ has a similar interpretation, since

$$\hat{\varepsilon}_i = \ln(Y_i/\hat{Y}_i) = \ln(\frac{Y_i - \hat{Y}_i}{\hat{Y}_i} + 1) \approx \frac{Y_t - \hat{Y}_i}{\hat{Y}_i},$$

and $\hat{\varepsilon}_i$ 100 becomes approximately equal to the percentage deviation between actual and fitted Y.

 See section 2 of the Lecture note: "2 points about the use of logs in econometric models"

Information criteria I

In modern econometrics two information criteria are often cited alongside, or instead of Adj R^2 :

► AIC: Akaike information criterion

$$AIC = \ln(\frac{\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2}}{n}) + \frac{2(k-1)}{n}$$

SC: Schwarz criterion

$$SC = \ln\left(\frac{\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2}}{n}\right) + \frac{(k-1)\ln(n)}{n}$$

- ▶ Like Adj R² they penalize extra regressors
- ▶ For $n \ge 8$ (HGL p 238) *SC* is stricter than *AIC*

Comparing the fit of linear and log-linear specifications I

Suppose we want to compare the linear model:

$$sales_i = \beta_0 + \beta_1 price_i + \beta_2 advert_i + \varepsilon_i$$
 (2)

against the log-linear (log-log) model

$$\log(sales)_i = \beta_0 + \beta_1 \log(price_i) + \beta_2 \log(advert_i) + \varepsilon_i$$
 (3)

Memo: The parameters β_1 and β_2 are partial elasticities in (3) and partial derivatives in (2).

This gives

$$\widehat{sales}_i = 118.9 - 7.91 price_i + 1.86 advert_i$$

$$\widehat{\ln(sales)}_i = 5.31 - 0.5 \ln(price_i) + 0.0454404 \ln(advert_i)$$

Example: Andy's

Comparing the fit of linear and log-linear specifications II

	lin	log-lin
R^2	0.448258	0.469105
$Adj-R^2$	0.432932	0.454358
$\hat{\sigma} = \sqrt{\hat{\sigma}^2}$	4.88612	0.0623737
$\frac{\hat{\sigma}}{Y}$ 100	$\frac{4.88612}{77.3747} \cdot 100 = 6.31$	$\frac{0.0623737}{4.34516} \cdot 100 = 1.44$
AIC	3.21198	-5.51004
SC	3.30468	-5.41734

t-tests |

- ▶ The t-test in the regression output is for the test situation H_0 : $\beta_j = 0$ against H_1 : $\beta_j \neq 0$
- ▶ The only difference from the simple regression case is the formula for $\widehat{se}(\hat{\beta}_j)$ (see Lecture 10) and the degrees of freedom for the t-distribution which is n-k-1 in general.
- If the questions is about including a regressor or not, these test can be used instead of the information criteria (It can be shown that |t| > 1 is enough to increase $Adj R^2$)
- Often, the economic problem that we work with leads to other test, situations that also can be tackled by t-tests
- ► Example. Log-linear model for *sales_i*. Could be interesting to test $H_0: \beta_2 = 1$ against $H_1: \beta_2 < 0$.

t-tests II

▶ If *H*₀ is rejected would then have formal evidence that, for a given price level, advertisement expenditure is taking a bigger share of sale revenues.

$$\widehat{\ln(\mathit{sales})}_i = 5.31 - \underset{(0.079)}{0.5} \ln(\mathit{price}_i) + \underset{(0.0137)}{0.0454} \ln(\mathit{advert}_i)$$

▶ The relevant statistic, which is T(72) distributed under H_0 is

$$t = \frac{0.0454 - 1}{0.0137}$$

Calculate the one-side p-value and conclude!

F-tests I

- ▶ Often the test situation implies two or more linear restrictions on the parameters $\beta_1, \beta_2, \dots, \beta_k$
- An F-test is used for such joint hypotheses
- ▶ Let d denote the number or linear restrictions
- We can make two regressions:
 - One unrestricted regression where the k variable none of the d restrictions are imposed. Call the sum of squared residuals RSS₁₁
 - One restricted regression where all the d restrictions are imposed. Collect RSS_R
- Heuristically we reject the joint H₀ that the d restrictions hold if RSS_R is significantly larger than RSS_U

F-tests II

Specifically:

$$F = \frac{RSS_R - RSS_U}{RSS_U} \frac{n - k - 1}{d} \sim F(d, n - k - 1)$$
 (4)

under the joint H_0 .

If we choose a 5 % significance level the joint H_0 is rejected if.

$$\frac{RSS_{R} - RSS_{U}}{RSS_{U}} \frac{n - k - 1}{d} > f_{0.95,d,n-k-1}$$

Testing the existence of a relationship I

 $H_0: \beta_j = 0$ for j = 1, 2, ..., k against $\beta_j \neq 0$ for at least one j Under H_0 ,

$$E(Y_i \mid X_{1i}, X_{2i}, \dots X_{ki}) = \beta_0$$

so Y is linearly independent of the set of k explanatory variables.

$$\begin{split} \frac{RSS_R - RSS_U}{RSS_U} \frac{d}{n - k - 1} &= \frac{TSS - RSS}{RSS} \frac{n - k - 1}{k} \\ &= \frac{ESS}{TSS - ESS} \frac{n - k - 1}{k} \\ &= \frac{R^2}{1 - R^2} \frac{n - k - 1}{k} \sim F(d, n - k - 1) \end{split}$$

This is not a test of the "significance of R^2 "

Subset F-test I

- ▶ In general d < k (a subset of parameters are restricted)
- \triangleright or the coefficients are not restricted to zero under H_0 .
- ▶ In these cases the general formula (4) applies
- Example

$$\log(sales)_i = \beta_0 + \beta_1 \log(price_i) + \beta_2 \log(advert_i) + \varepsilon_i$$

and the test

$$H_0: eta_1=-1$$
 and $eta_2=1$ against $H_1: eta_1
eq -1$ and/or $eta_2
eq 1$ $RSS_R=19.3975258.$

$$F(2,72) = \frac{19.3975258 - 0.280114762}{0.280114762} \cdot \left(\frac{72}{2}\right) = 2456.9[0.00000]$$

Testing with the use of the delta method I

► Lecture 3: A non-linear function of two random variables *X* and *Y*:

$$g(X,Y)=\frac{X}{Y}$$

- Since E and Var are linear operators, we must first find a linear approximation to g(X, Y).
- This is done by Taylor expansion (Sydsæter 2003, Kap 7).
- ▶ HGL use the name *delta method*, see p. Ch 5.6.3 and A 5B.5.

Testing with the use of the delta method II

▶ BN page 72-73 it is show that the following holds

$$E\left(\frac{X}{Y}\right) \approx \frac{\mu_X}{\mu_Y},\tag{5}$$

$$Var\left(\frac{X}{Y}\right) \approx \left(\frac{1}{\mu_Y}\right)^2 \left[\sigma_X^2 + \left(\frac{\mu_X}{\mu_Y}\right)^2 \sigma_Y^2 - 2\left(\frac{\mu_X}{\mu_Y}\right) \sigma_{X,Y}\right] \tag{6}$$

- Before leaving Andy's we can apply the delta method
- We then consider the linear model

$$sales_i = \beta_0 + \beta_1 price_i + \beta_2 advert_i + \beta_3 advert_i^2 + \varepsilon_i$$

- ► Let advert₀ be the optimal level of advertisement defined by the 1oc
- From HGL p 193 we have:

$$\beta_2 + 2\beta_3 advert_o = 1$$

advert₀ is a derived parameter that is a non-linear function of the regression parameter β_2 and β_3 .

$$advert_o = \frac{1}{2} \frac{1 - \beta_2}{\beta_3}$$

We also consider

$$\widehat{advert}_o = \frac{1}{2} \frac{1 - \hat{\beta}_2}{\hat{\beta}_3}$$

as an estimator of the parameter $advert_o$. If we want to test an hypothesis like

$$H_0$$
: $advert_o = 0$

we need to approximate $Var(advert_o)$ by the delta method:

$$\begin{split} \textit{Var}(\widehat{\textit{advert}_o}) &= \left(\frac{1}{2}\right)^2 \textit{Var}(\frac{1-\hat{\beta}_2}{\hat{\beta}_3}) \\ &\approx \left(\frac{1}{2}\right)^2 \left(\frac{1}{2.768}\right)^2 \times \\ &\left[(3.556)^2 + \left(\frac{1-12.151}{-2.768}\right)^2 \cdot (0.941)^2 - 2 \cdot \left(\frac{(1-12.151)}{-2.768}\right) \cdot 3.2887 \right] \\ &= \frac{1}{4} * 0.130 \, 52 * 0.518 \, 41 = 0.016916. \end{split}$$

HGL finds almost the same in page 194 (rounding off?).

▶ An approximate *t*-value for H_0 : advert_o = 0 is therefore:

$$t = \frac{\frac{1}{2} \frac{1 - 12.1512}{-2.768} - 0}{\sqrt{0.016916}} = \frac{2.014}{\sqrt{0.016916}} = 15.0$$

- Clearly significant.
- Will start with other examples, from macro economics, on Thursday