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I HGL: Ch 9; BN: Kap 10

I The HGL Ch 9 is a long chapter, and the testing for
autocorrelation part we have already covered.

I HGL starts the chapter with the Finite Distributed lag model
(DL), for example

Yt = β0 + β1Xt + β2Xt−1 + εt (1)

and discuss estimation/testing with classical assumptions for
εt , and without

I But (1) is “almost” a usual static model, and because
economic relationships are often more genuinely dynamic, it
has low practical relevance.

I Therefore we focus the ”ARDL” part of Ch 9, and starts with
the simplest version of that model class
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Autoregressive first order model AR(1) model I

I The simplest “dynamic regression model”. It has properties
that carry over to more general models (ARDL below).

I Assume that we have t = 1, 2, . . . , T independent and
identically distributed random variables εt :

εt ∼ IID
(
0, σ2

ε

)
, t = 1, 2, . . . , T

Then, from

Yt = β0 + β1Yt−1 + εt , |β1| < 1, εt ∼ IID
(
0, σ2

ε

)
, (2)

we know something precise about the conditional distribution
of Yt given Yt−1, and more generally the history of Y up to
period t − 1.
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Autoregressive first order model AR(1) model II
I |β1| < 1 secures stationarity (HGL 9.1.3) for this model.

I We will refer to Yt as given by (2) as a 1st order
autoregressive process, usually denoted AR(1).

I In direct parallel to the previous models we can write

Yt = E (Yt | Yt−1) + εt = β0 + β1Yt−1 + εt (3)

where
E (εtYt−1) = 0 (4)

by construction (in fact by assumption of |β1| < 1, but leave
that for another course)

I (4) is necessary for pre-determinedness of Yt−1.

I But is E (εt+jYt−1) = 0 for j = 1, 2, ... as well?
I And what about E (εt−1−jYt−1) for j = 1, 2?
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Autoregressive first order model AR(1) model III

I To answer these questions: need to consider the solution of
(2), which is a stochastic difference equation.
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Solution I

I |β1| < 1 defines Yt as a causal-process: Stochastic
shocks/impulses/news represented by ε come before (or in the
same period) as the response in Yt .

I The backward-recursive solution of a causal-process is
dynamically stable. We show in class that it is:

Yt = β0

t−1

∑
i=0

βi
1 + βt

1Y0 +
t−1

∑
i=0

βi
1εt−i (5)

where Y0 is the initial condition.
The conditional expectation is

E (Yt | Y0) = β0

t−1

∑
i=0

βi
1 + βt

1Y0
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Solution II

while the unconditional expectation of Yt is defined for the
situation where t → ∞:

E (Yt) =
β0

1− β1
(6)

For simplicity, we regard Y0 as a deterministic parameter. Then
the variance is found as:

Var(Yt) = Var(
t−1

∑
i=0

βi
1εt−i ) = σ2

ε

t−1

∑
i=0

(
β2

1

)i
=

t→∞

σ2
ε

1− β2
1

(7)
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Pre-determinedness of lagged Y I

The solution for Yt−1 (make use of (5)!) shows that:

E (Yt−1εt) = E (
t−2

∑
i=0

βi
1εt−i−1)εt = 0

and

E (Yt−1εt+j ) = 0 for j = 1, 2, . . .

But also that:

E (Yt−1εt−i ) 6= 0 for i = 1, 2,

Yt−1 is a pre-determined explanatory variable.
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Bias and consistency I

I To save notation: Consider the case of E (Yt) = 0 =⇒
β0 = 0.

I The OLS estimator β̂1 is

β̂1 =
∑T

t=2 YtYt−1

∑T
t=2 Y 2

t−1

=
T

∑
t=2

(
β1Y 2

t−1

∑T
t=2 Y 2

t−1

)
+

T

∑
t=2

(
Yt−1εt

∑T
t=2 Y 2

t−1

)
(8)

=⇒

E
(

β̂1 − β1

)
= E

(
∑T

t=2 Yt−1εt

∑T
t=2 Y 2

t−1

)
I Cannot show that E of the bias term is zero
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Bias and consistency II

I Both the denominator and numerator are random variables,
and they are not independent: For example will ε2 “be in” the
numerator and (because of Y2 = ε2) also in Y2 × Y2 in the
denominator.

I But, with reference to the Law of large numbers and Slutsky’s
theorem we have

plim
(
φ̂1 − φ1

)
=

plim 1
T ∑T

t=2 Yt−1εt

plim 1
T ∑T

t=2 Y 2
t−1

=
0
σ2

ε

1−β2
1

= 0.

since E (Yt−1εt) = 0 (numerator) and |β1| < 1 (implies the
existence of the variance).
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Bias and consistency III

I The OLS estimator β̂1 in the AR(1) is consistent, and it can
be shown to be asymptotically normal:

√
T
(

β̂1 − β1

)
d−→ N

(
0,
(
1− β2

1

))
(9)

which entails that t-ratios can be compared with critical
values from the normal distribution.

I Therefore: the large sample inference theory for the regression
model extends to the AR(1) model.
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Analysis of finite sample bias in AR(1)

In (2), the finite sample bias can be shown to be approximately

E
(

β̂1 − β1

)
≈ −2β1

T
,

We can make this more concrete with a Monte-Carlo analysis.
In the experiment, the DGP is

Yt = 0.5Yt−1 + εYt , εYt ∼ NIID (0, 1) ,

and T = 10, 11,. . . , 99, 100. We use 1000 replications for each T
and estimate the bias:

Ê
(

β̂1(T ) − β1

)
=

1

1000

1000

∑
i=1

(
β̂1(T )i − β1

)
.

12 / 17



AR(1) model ARDL model Using the dynamic regression model: Dynamic effects

Bias in the AR(1) model

10 20 30 40 50 60 70 80 90 100
0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01 Ê
(

β̂1(10) − 0.5
)
=

−0.058 >
... ≈ −2×0.5

10 = −0.1

Ê
(

β̂1(100) − 0.5
)
=

−0.008 >
... ≈ −2×0.5

100 =
−0.01.
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Monte Carlo analysis of AR(1) with exogenous regressor

Yt = β0 + β1Yt−1 + β2Xt + εt , |β1| < 1, εt ∼ IID
(
0, σ2

ε

)
.

(10)
which we will also refer to as an AutoRegressive Distributed Lag
model, ARDL.

I We assume that Xt is stricty exogenous

Monte Carlo DGP:

Yt = 0.5Yt−1 + 1 · Xt + εYt , εYt ∼ NIID (0, 1) ,

Xt = 0.5Xt−1 + εXt , εXt ∼ NIID (0, 2) ,

There are now two biases, Ê
(

β̂1(T ) − 0.5
)

and Ê
(

β̂2(T ) − 1
)
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Biases in the ADL model
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Conclusions

I The OLS biases are small, and the speeds of convergence to
zero are high

I OLS estimation, and the use t−ratios and F -statistics for
testing extend to dynamic models, given that the model is
correctly specified, disturbances that have the usual classical
assumptions conditional on Yt−1 and Xt .

I In particular: Avoid residual autocorrelation because it will
destroy pre-determinedness of Yt−1!

I The tests we have covered for Non-Normality,
Heteroskedasticity and Autocorrelation in (Lect 13 and 14)
are valid mis-specification tests also for ARDL models!

16 / 17



AR(1) model ARDL model Using the dynamic regression model: Dynamic effects

Dynamic response to shocks
One purpose of estimating an ARDL model:

Yt = β0 + β1Yt−1 + β2Xt + β3Xt−1 + εt (11)

with classical assumptions for εt conditional on

Yt−1, Xt and Xt−1

is to estimate the dynamic response of Y to a permanent or
temporary change in X .

I When we consider changes in the X , the key concept is
dynamic multiplier.

I Can also study a temporary shock to ε (for example of
magnitude one standard deviation σ) These dynamic effects
are often called impulse-responses.

I In class: Derive dynamic multipliers (short), and show
examples of estimated dynamic multipliers.

I Use of model in forecasting: Lecture 16.
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