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HGL: Ch 9; BN: Kap 10
The HGL Ch 9 is a long chapter, and the testing for
autocorrelation part we have already covered.

HGL starts the chapter with the Finite Distributed lag model
(DL), for example

Yi = Bo + P1Xe + B2 Xi—1 + & (1)

and discuss estimation /testing with classical assumptions for
€+, and without

But (1) is “almost” a usual static model, and because
economic relationships are often more genuinely dynamic, it
has low practical relevance.

Therefore we focus the "ARDL" part of Ch 9, and starts with
the simplest version of that model class
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Autoregressive first order model AR(1) model |

» The simplest “dynamic regression model”. It has properties
that carry over to more general models (ARDL below).

» Assume that we have t = 1,2,..., T independent and
identically distributed random variables €;:

ee ~1ID(0,07), t=1,2,..., T
Then, from
Ye=PBo+P1Yeo1+er, B <1, e ~1ID(0,02), (2)

we know something precise about the conditional distribution
of Y; given Y;:_1, and more generally the history of Y up to
period t — 1.
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Autoregressive first order model AR(1) model
> |B1]| < 1 secures stationarity (HGL 9.1.3) for this model.

> We will refer to Y;: as given by (2) as a Ist order
autoregressive process, usually denoted AR(1).

» In direct parallel to the previous models we can write

Yt:E(Yt | Yt—l)""gt:,BO"i_ﬁlYt—l_'_gt (3)

where
E(St Yt—l) =0 (4)
by construction (in fact by assumption of |B1]| < 1, but leave
that for another course)
> (4) is necessary for pre-determinedness of Y;_j.

» Butis E(eryjYt-1) =0forj=1,2,... as well?
> And what about E(e;_1_jY; 1) for j=1,2?
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Autoregressive first order model AR(1) model III

» To answer these questions: need to consider the solution of
(2), which is a stochastic difference equation.
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Solution |

> |B1]| < 1 defines Y; as a causal-process: Stochastic
shocks/impulses/news represented by € come before (or in the
same period) as the response in Y;.

» The backward-recursive solution of a causal-process is
dynamically stable. We show in class that it is:

t—1 t—1
Ye = Po E B1+BiYo+ Z Bi€e—i (5)
i=0 i—0

where Yy is the initial condition.
The conditional expectation is

t—1
E(Y: | Yo) = Bo ;}ﬁi‘i‘ﬁiyo
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Solution Il

while the unconditional expectation of Y; is defined for the
situation where t — oo:

E(v) = 2 )

For simplicity, we regard Yj as a deterministic parameter. Then
the variance is found as:

t—1 t—1 .
Var(Yy) = Var(z Biet—i) = ‘752 Z (,B%)’
i=0 i=0
_
t—o0 1— ’B%
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Pre-determinedness of lagged Y |
The solution for Y:—1 (make use of (5)!) shows that:

t—2
E(thlst) = E(E ‘Bist_,'_]_)ﬁt =0
i=0

and
E(Yt—18t+j) =0 forj == 1,2, e

But also that:
E(Yi_1€t—;) #0fori=1,2,

Yi_1 is a pre-determined explanatory variable.
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Bias and consistency |

» To save notation: Consider the case of E(Y;) =0 =
Bo = 0.
» The OLS estimator Bl is

E Zt 2Yth 1 i( ,Blyt 1 )_,_i( Yi-1€¢ )

T 2
Zt:Z t—1 t=2 t 2 t=2 Zt:Z Yt—l

(8)

!

" . ZT:2 Yi—1€t
c(s) - (T2

» Cannot show that E of the bias term is zero
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Bias and consistency |l

» Both the denominator and numerator are random variables,
and they are not independent: For example will e “be in” the
numerator and (because of Y2 = €3) also in Y2 X Y2 in the
denominator.

» But, with reference to the Law of large numbers and Slutsky's
theorem we have

.o~ plim 3 ZTzz Yi-1€t 0
plim (¢1 — 1) = —L = —=—=0
plim+ 3, 5 Y7, ﬁl'

since E (Y;—1&¢) = 0 (numerator) and |B1] < 1 (implies the
existence of the variance).
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Bias and consistency IlI

» The OLS estimator By in the AR(1) is consistent, and it can
be shown to be asymptotically normal:

VT (Bi—p1) S N (0, (1-B3)) (9)

which entails that t-ratios can be compared with critical
values from the normal distribution.

> Therefore: the large sample inference theory for the regression
model extends to the AR(1) model.
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Analysis of finite sample bias in AR(1)

In (2), the finite sample bias can be shown to be approximately

JEROEES

We can make this more concrete with a Monte-Carlo analysis.
In the experiment, the DGP is

Y, =05Ye1+eye, eye~ NID(0,1),

and T =10, 11,..., 99, 100. We use 1000 replications for each T
and estimate the bias:

1000

E (Bur 1) = 150 2 (Bumi—B1)-
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Bias in the AR(1) model

001 — E ﬁl(lO) - 05 -
] —0.058 >

~ —2x0.5 _
0.03 ]?E) g O 1
0.05 E ‘31(100) - 05 -
006 —0.008 >
~ —2X05 _

100

008 —0.01.
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Monte Carlo analysis of AR(1) with exogenous regressor

Ye=PBo+P1Yeo1+BoXe+er, |B1| <1, e~ 1ID(0,07).
(10)
which we will also refer to as an AutoRegressive Distributed Lag
model, ARDL.

» We assume that X; is stricty exogenous

Monte Carlo DGP:

Yt :O.SYt_1+1'Xt+€Yt, Eyr ~~ NIID (0, 1),
Xe = 05Xe_1+exe,  €xe ~ NIID (0,2)

There are now two biases, £ (ﬁl(T) — 0.5) and E (,32(7-) — 1)
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ARDL model

Using the dynamic regression model: Dynamic effects

Biases in the ADL model
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ARDL model

Conclusions

» The OLS biases are small, and the speeds of convergence to
zero are high

» OLS estimation, and the use t—ratios and F-statistics for
testing extend to dynamic models, given that the model is
correctly specified, disturbances that have the usual classical
assumptions conditional on Y;_1 and X;.

» In particular: Avoid residual autocorrelation because it will
destroy pre-determinedness of Y;_1!

» The tests we have covered for Non-Normality,
Heteroskedasticity and Autocorrelation in (Lect 13 and 14)
are valid mis-specification tests also for ARDL models!
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Dynamic response to shocks
One purpose of estimating an ARDL model:

Ye=Bo+P1Ye-1+ B2Xe + B3Xe—1+ & (11)
with classical assumptions for €; conditional on

Yt_l, Xt and Xt—l

is to estimate the dynamic response of Y to a permanent or
temporary change in X.

» When we consider changes in the X, the key concept is
dynamic multiplier.

» Can also study a temporary shock to ¢ (for example of
magnitude one standard deviation ) These dynamic effects
are often called impulse-responses.

» In class: Derive dynamic multipliers (short), and show
examples of estimated dynamic multipliers.

> Use of model in forecasting: Lecture 16.
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