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References

I HGL, Ch 9.7.2 (forecasting with an ARDL model), and Ch.
10.2. (Measurement error).

I BN Kap 5.11-5.12
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Recap: OLS and systems-of-equations estimation

I Lessons from Lecture 16:
I For the estimation of parameters of a system of equation OLS

may, or may not, be used to obtain consistent estimators of the
parameters of interest.

I If the parameters of interest are the parameters of one or more of
the structural equations of the model, OLS will not give
consistent estimators

I This is known as the “simultaneous-equations bias” or
“simultaneity bias”.

I If the parameters of interest are the parameters of (one or more)
of the reduced form equations, OLS give consistent estimators.

I If the purpose of the analysis is forecasting, the relevant
parameters of interest are of the reduced forms equations (in our
example for Ct) so OLS can be used.
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Subjective and rational expectations I

I So far, agents’ expectations have not been explicit in the
models we have considered.

Yt = β0 + β1Xt + εt (1)

Tentative general interpretation: Agents formulate contingent
plans, and act on observed X in period t.

I Formulation with explicit expectation notation:

Yt = β0 + β1X e
t + εt , (2)

where X e
t represents the agents’ expected current variable.
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Subjective and rational expectations II

I In modern economic theory it is common with models which
contain leads of expectations variables:

Yt = β0 + β1X e
t+1 + εt . (3)

I To complete the econometric model, need to specify how
expectations are generated (formed). There are two main
hypotheses:

I Subjective expectations: X e
t+1 based on observations of the

random variable up to t − 1 (or t).

I Rational expectation: X e
t+1 is defined as the mathematical

conditional expectation of X e
t+1 based on a information set

It−1 or (It).
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Subjective expectations I

I Example (a “classic”): Adaptive expectations:

X e
t+1 = (1− τ)Xt + τX e

t , 0 < τ < 1 (4)

Solution for X e
t+1:

X e
t+1 = (1− τ)

∞

∑
j=0

τjXt−j (5)

Insertion in (3) gives

Yt = β0 + β1(1− τ)
∞

∑
j=0

τjXt−j + εt (6)
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Subjective expectations II

Use of the “Koyck-transformation” from Lecture 15 gives:

Yt = β0 − τβ0 + τYt−1 + β1(1− τ)Xt + εt − τεt−1

Yt = β
∗
0 + β∗1Yt−1 + β

∗
2Xt + εt − τεt−1 (7)

I Assume that conditional on Yt−1 and Xt , εt (t = 1, 2, ...)
have classical properties.

I How would you estimate β
∗
0,β

∗
1, and β∗2 in (7)?
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Rational Expectations (RE) I
RE theory and econometrics motivated the “Nobel Price in
Economics” to Sargent and Sims in 2011.

”...it emphasized rational expectations, the notion
that economic decisions makers like households and firms
do not make systematic mistakes in forecasting” The
Royal Swedish Academy of Sciences, 2011

An example RE model:

Yt = β0 + β1E (Xt+1 | It−1) + εt (8)

Xt = λXt−1 + εxt , − 1 < λ < 1 (9)

where εt and εxt are two disturbances that are independent from
each other, Cov(εt , εxt) = 0, and they have classical properties
conditional on the agents’ information set It−1.
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Rational Expectations (RE) II

I In (8)-(9) the only information about t − 1 is Xt−1, so
conditioning on It−1 is the same as conditioning on Xte.

I What is E (Xt+1 | It−1) ≡ E (Xt+1 | It−1)?
I The answer is obtained from the reduced form of Xt+1

because that equation contains all information about the
random variable Xt+1:

Xt+1 = λXt + εt+1

= λ2Xt−1 + λεxt + εxt+1, (10)

Then

E (Xt+1 | Xt−1) = λ2Xt−1 (11)

9 / 24



Models with expectations as explanatory variables Measurement-error bias of OLS The Lucas critique and invariance

Rational Expectations (RE) III

Replacing the expected Xt+1 in (8) by rhs of (11) gives

Yt = β0 + β1λ2Xt−1 + εt

= β0 + β
′
1Xt−1 + εt (12)

which is the rational expectations solution for Yt .

I The parameters of (12) are estimated consistently by OLS,
Why?

I But the parameter of interest, β1, is not estimated
consistently by that OLS estimator:

plim(β̂
′
1) = plim(

∑t(Xt−1 − X̄−1)Yt

∑t(Xt−1 − X̄−1)2
) = β1λ2 6= β1
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Rational expectations and bias of OLS I

From

E (Xt+1 | Xt−1) = λ2Xt−1

and the reduced form (10), we have that

Xt+1 − E (Xt+1 | Xt−1) = λεxt + εxt+1

and

E (Xt+1 | Xt−1) = Xt+1 − λεxt − εxt+1
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Rational expectations and bias of OLS II
I The forecast error has zero mean, and has constant variance

(λ2 + 1)σ2
x . This makes it tempting to E (Xt+1 | It−1) in

Yt = β0 + β1E (Xt+1 | It−1) + εt

by Xt+1 and use OLS to estimate

Yt = β0 + β1Xt+1 + ut (13)

and “hope for the best”.
I However, since

ut = εt − β1λεxt − β1εxt+1

there is no way that we can claim independence between the
disturbance ut and the explanatory variable Xt+1.

I The OLS estimator β̂1 from (13) is therefore inconsistent for
the parameter of interest β1 in the model (8)-(9).
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A closer look at the OLS bias in RE models I

Consider the even simpler RE model:

Yt = β1E (Xt | It−1) + εt (14)

Xt = λXt−1 + εxt , − 1 < λ < 1 (15)

with the same assumptions about εt and εXt as above.
We now have:

Xt = E (Xt | It−1) + εxt = λXt−1 + εxt (16)

and if we replace E (Xt | It−1) by Xt in (14), the disturbance ut in

Yt = β1Xt + ut
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A closer look at the OLS bias in RE models II
must be

ut = εt − β1εxt .

The probability limit of the OLS estimator

β̂1 =
∑T

t=1 YtXt

∑T
t=1 X 2

t

plim(β̂1 − β1) =
plim 1

T ∑T
t=1 utXt

plim 1
T ∑T

t=1 X 2
t

=
plim 1

T ∑t=1 (εt − β1εxt) (λXt−1 + εxt)
σ2

εxt
1−λ2

=
−β1σ2

εx
σ2

εx
1−λ2

= −β1(1− λ2) (17)
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Measurement-error bias I

I The bias of OLS in RE model is a special case of the
phenomenon called measurement-error bias.

I To see the generality of the problem, consider the
cross-section model:

Yi = β0 + β1X ∗i + ε∗i i = 1, 2, . . . , n (18)

where Cov(ε∗i , X ∗i ) = 0, and ε∗i has the other classical
properties as well.

I Assume that X ∗i is an unobservable random variable which is
replaced by the observable Xi . in the estimation of (18). The
difference between Xi and X ∗i is random:

ei = Xi − X ∗i
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Measurement-error bias II

I Even if all ei and ε∗i are independent, OLS on

Yi = β0 + β1Xi + ε i i = 1, 2, . . . , n (19)

will produce an inconsistent estimator of β1, because Cov(ε i ,
Xi ) 6= 0. The bias can be shown (try it) to be

plim(β̂1 − β1) =
−β1σ2

e

Var(X )
=
−β1σ2

e

σ2
X ∗ + σ2

e

(20)

where σ2
e = Var(ei ) and σX ∗ = Var(X ∗i ).

I The RE bias in (17) is a special case (adjusting for notation)
of (20). See sepeate lecture note (posted 6 May)
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The Lucas critique I

I Return to the time series case, and the RE model (14)-(14).
We know that the OLS estimator is inconsistent:

plim(β̂1) = β1 − β1(1− λ2) = β1λ2 (21)

I Note that β1λ2 is the slope coefficient of the conditional
expectation of Yt given Xt .

I Why? Because OLS is always a consistent estimator of the
conditional expectation.

The Lucas-critique, from 1976, attacks the idea that if there is a
change in the expectations about Xt , the effect of this change on
Yt can be predicted by using the OLS estimate β̂1 from a
regression model.
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The Lucas critique II

I The critique says that if the true model is a RE model of the
type (14)-(14), then plim(β̂1) has to change in the same time
period as expectations change, i.e. when λ changes.

I The critique implies that policy analysis cannot be based on
OLS estimated conditional expectations (regression models).
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Testing the relevance of the Lucas critique I

I The Lucas-critique is a “possibility theorem” not a truism

I If there is evidence of a structural breaks in the equation for
Xt we can test the relevance of the Lucas critique.

I Logically, the combined occurrence of

I Structural breaks in the equation for Xt
I Structural breaks in the parameters of the conditional model

for Yt given Xt (i.e. the regression model)
confirm the Lucas critique

I But conversely, the combined occurrence of

I Structural breaks in the equation for Xt
I Invariance (no break) in the conditional model

refutes the relevance of the Lucas critique.
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Testing the relevance of the Lucas critique II

I The case where the parameters of the conditional model are
invariant to structural breaks elsewhere in the system, is called
the case of super-exogenous regressors

I Invariance is a relative property: No model can have
parameters that are invariant to all types of shocks, and we
can only test for the ones that have occurred.

I Haavelmo was clear about this already in 1944, in The
Probability Approach in Econometrics. He called equations
with parameters that have a high degreee of invariance to
changes elsewhere in the system autonomous equations. He
also said that:
The construction of systems of autonomous equations is a
matter of intuition and factual knowledge, it is an art (p 29)
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A simple analysis of invariance I

I Consider a sample with time series data for Xt and Yt

(t = 1, 2, . . . T )

I Start by recording the two possible regression coefficients:

I Regress Y on X :

β̂1 =
∑T
t=1(Xt − X̄ )Yt

∑T
t=1(Xt − X̄ )2

I Regress X on Y :

β̂
′
1 =

∑T
t=1(Xt − X̄ )Yt

∑n
t=1(Yt − Ȳ )2
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A simple analysis of invariance II
I As we have seen many times

β̂1 β̂
′
1 = r2XY (22)

and

plim(r2XY ) = ρ2XY (theoretical correlation)

β1β
′
1 = ρ2XY

I Assume that there is a change to Xt that leads to a break in
ρXY . The Lucas critique says that in particular β1should
change at the same point in time.

I If β̂1 remains constant emprically despite the break in ρXY ,
the relevance of the Lucas critique is refuted, there is a degree
of invariance in plim(β̂1).
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A simple analysis of invariance III

I This can be tested by a regression model with an interaction
term

Yt = β0 + β1Xt + δXtDt + εt

where the dummy Dt captures the break. A step-dummy if
there is a permanent break. Test H0 δ = 0 by the t-ratio test

I Or can use graphs of recursive estimates, as in Lecture 1:
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An example of super-exogeneity I
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I The graphs show recursive
estimates of β̂1and β̂

′
1

I There is a structural
break in period 50 (a
higher σX that reduces
plim(rXY ), and λ on the
previous slides)

I β̂1 is invariant, refuting
the Lucas critique and
supporting that X → Y .

I More about invariance
and super-exogeneity and
expectations in E 4160.
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