ECON 3150/4150, Spring term 2013. Lecture 2 Data transformations and flexible functional forms

Non-linear variable transformations

Ragnar Nymoen

University of Oslo

17 January 2013

Regression with transformed variables I

- ▶ References: See Lecture 1
- Transformation of the data prior to fitting the regression line is often used in applied work.
- ► The greatly extends the relevance of OLS estimation to real world data
- Distinguish between
 - ► Linear transformations
 - ▶ Non linear transformations ("flexible functional forms")
- ▶ In this lecture we give an introduction to some of the possibilities that we have at our disposal

Non-linear variable transformations

De-meaning I

- ▶ We have already encountered *de-meaning* of the regressor *X* as a way of simplifying the derivations of the OLS estimates.
- Now, consider de-meaning both variables:

$$Y_i^* = Y_i - \bar{Y}$$
$$X_i^* = X_i - \bar{X}$$

where the transformed variables are denoted Y_i^* and X_i^* (i = 1, 2, ..., n).

De-meaning II

Based on the same argument as in Lecture 1, the best predictor of Y_i^* given X_i^* is

$$\hat{Y}_{i}^{*} = \hat{\beta}_{0}^{*} + \hat{\beta}_{1}^{*} X_{i}^{*} \tag{1}$$

Non-linear variable transformations

OLS estimation (min.sum of sq.residuals) gives

$$\hat{\beta}_{0}^{*} = \overline{Y^{*}} - \hat{\beta}_{1} \overline{X^{*}}$$

$$\hat{\beta}_{1}^{*} = \frac{\sum_{i=1}^{n} (X_{i}^{*} - \overline{X^{*}}) Y_{i}^{*}}{\sum_{i=1}^{n} (X_{i}^{*} - \overline{X^{*}})^{2}}$$

De-meaning III

• By construction, $\overline{Y^*} = \overline{X^*} = 0$. and:

$$\hat{\beta}_0^* = 0 \tag{2}$$

Non-linear variable transformations

$$\hat{\beta}_1^* = \frac{\sum_{i=1}^n (X_i^*) Y_i^*}{\sum_{i=1}^n (X_i^*)^2} = \frac{\sum_{i=1}^n (X_i - \bar{X}) (Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2} \equiv \hat{\beta}_1$$
 (3)

Insights to take away from this:

- 1. If you de-mean both the regressand and the regressor, the regression line has intercept 0
- 2. The regression line goes trough the origin of the scatter plot between Y_i^* and X_i^*
- 3. When Y_i^* is regressed on X_i^* we can therefore drop the intercept/constant from the regression, and write the best predictor as $\hat{Y}_{i}^{*} = \hat{\beta}_{1}^{*} X_{i}^{*}$ where $\hat{\beta}_{1}^{*} \equiv \hat{\beta}_{1}$ as shown.

WARNINGIIIII

Regression with transformed data

Unless both variables are de-meaned, you should ALWAYS include the intercept in the regression line. Otherwise you do **not** get the best predictor for Y given X, the estimate of the slope coefficient will also be wrong.

Non-linear variable transformations

 \triangleright Specifically, you can show as an exercise that if Y_i is regressed on X_i with no intercept, the OLS estimate of the slope parameter becomes

$$\widehat{\beta}_1^{no-i} = \frac{\sum_{i=1}^n Y_i X_i}{\sum_{i=1}^n X_i^2} \neq \widehat{\beta}_1$$

unless the means of Y_i should just happen to be zero!

Scaling I

- Scaling is done by multiplying the original data with the known factors ω_{ν} and ω_{κ} .
- For example: change units from thousand to million or billion. Let Y_i^{ω} and X_i^{ω} denote the scaled variables

Non-linear variable transformations

$$Y_i^{\omega} = \omega_y Y_i$$
$$X_i^{\omega} = \omega_x X_i$$

▶ By deriving the OLS estimates $\hat{\beta}_0^{\omega}$ and $\hat{\beta}_1^{\omega}$ you can show that

Scaling II

$$\hat{\beta}_0^{\omega} = \omega_y \hat{\beta}_0 \tag{4}$$

Non-linear variable transformations

$$\hat{\beta}_1^{\omega} = \frac{\omega_y}{\omega_x} \hat{\beta}_1 \tag{5}$$

- Scaling of one or both of the variables will affect the OLS estimates
- ▶ If for example X_i is in thousands, and X_i^{ω} is in millions then $\omega_{x} = 0.001.$
 - If $\omega_y = 1$, no scaling of Y_i , $\hat{\beta}_1 = 0.005$ is changed to $\hat{\beta}_1^{\omega} = 5$ after the scaling.
 - If on the other hand, $\omega_X = \omega_V$, the slope estimate is unchanged by the scaling, but the intercept changes.

Standardized variables I

Finally imagine first de-meaning Y_i and X_i , and second scaling the de-meaned variables by

Non-linear variable transformations

$$\omega_{y} = \frac{1}{\hat{\sigma}_{Y}}$$
$$\omega_{x} = \frac{1}{\hat{\sigma}_{x}}$$

where $\hat{\sigma}_{v}$ and $\hat{\sigma}_{x}$ are the empirical standard deviations

$$\hat{\sigma}_Y = \sqrt{rac{1}{n}\sum_{i=1}^n(Y_i - \bar{Y})^2}$$
, and $\hat{\sigma}_X = \sqrt{rac{1}{n}\sum_{i=1}^n(X_i - \bar{X})^2}$

Standardized variables II

$$Y_i^{*\omega} = \frac{Y_i - \bar{Y}}{\hat{\sigma}_y}$$
$$X_i^{*\omega} = \frac{X_i - \bar{X}}{\hat{\sigma}_x}$$

The standardized regression becomes

$$\hat{Y}_{i}^{*\omega} = \hat{\beta}_{1}^{*\omega} X_{i}^{*\omega} \tag{6}$$

Non-linear variable transformations

Since standardization is a combination of de-meaning and scaling we have that

$$\hat{\beta}_{1}^{*\omega} = \frac{\omega_{Y}}{\omega_{X}} \hat{\beta}_{1} = \frac{\hat{\sigma}_{X}}{\hat{\sigma}_{Y}} \hat{\beta}_{1} = \frac{\hat{\sigma}_{X}}{\hat{\sigma}_{Y}} \frac{\hat{\sigma}_{XY}}{\hat{\sigma}_{X}} = r_{XY}$$
 (7)

With standardized variables, regression is reduced to "correlation analysis".

Estimating non-linear relationships I

▶ If OLS can only be used to fit linear relationships between Y and X, the relevance of the method will be very limited.

Non-linear variable transformations

- \triangleright However, by applying non-linear transformations of Y_i and X_i before estimation, we can estimate many interesting non-linear functions with OLS.
- Using the transformed variables the model is linear in the parameters β_0 and β_1 .
- In this way we obtain *great flexibility* in fitting different non-linear relationships between Y and X.
- ▶ In applied econometrics, we often refer to non-linear data transformations as the choice of functional form.

Quadratic transformation of the regressor I

Assume that we have an theoretical non-linear relationship between Y and X.

Non-linear variable transformations

••00

$$Y = \beta_1 + \beta_1 X^2$$

This can be put into regression form by regressing Y_i on the squared X_i :

$$X_i^* = X_i^2$$

Hence we have

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i^*$$

••00

Non-linear variable transformations

Quadratic transformation of the regressor II

where $\hat{\beta}_0$ and $\hat{\beta}_1$ are calculated with the use of the OLS formulae (using X_i^* in the place of X_i). The estimated derivative in this regression depends on X:

$$\frac{\widehat{\partial Y}}{\partial X} = 2\hat{\beta}_1 X_i$$

which is increasing in X_i if $\beta_1 > 0$.

- ▶ If Y is a measure of costs, and X is a measure of production (or of capacity), this model may be relevant to estimate a cost-function with increasing marginal cost
- See HGL Figure 2.13 and 2.14

0000

Non-linear variable transformations

Log-linear models I

If one or both of the variables are log transformed, we speak of log-linear models:

i
$$Y = \beta_0 + \beta_1 \ln X$$

ii $\ln Y = \beta_0 + \beta_1 X$
iii $\ln Y = \beta_0 + \beta_1 \ln X$

- The two first are sometimes called semi-logarithmic models.
- ► The third is sometimes called the log-log model.
- ▶ All three relationships can be formulated as linear regressions and OLS estimation can be applied.
- ▶ The differences lies in the interpretation.

0000

Non-linear variable transformations

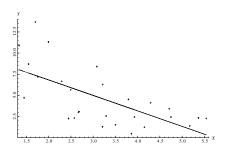
Some popular functional forms

Log-linear models II

- ▶ i), ii) and iii) will have
- different derivatives,
- different elasticites (El_xy)
- ▶ and different semi-elasticities $(\frac{\partial y}{\partial x} \frac{1}{y})$

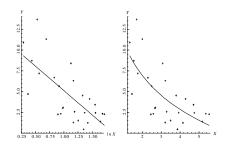
$$\begin{array}{cccc} \widehat{\frac{\partial y}{\partial x}} & \widehat{\frac{\partial y}{\partial x}} \widehat{\frac{1}{y}} & \widehat{El_x y} \\ \\ i & \widehat{\beta}_1 \frac{1}{X} & \widehat{\beta}_1 \frac{Y}{X} & \widehat{\beta}_1 Y \\ ii & \widehat{\beta}_1 Y & \widehat{\beta}_1 & \widehat{\beta}_1 X \\ iii & \widehat{\beta}_1 \frac{Y}{X} & \widehat{\beta}_2 \frac{1}{X} & \widehat{\beta}_1 \end{array}$$

Phillips curve models (PCMs) for Norway provides some illustrations



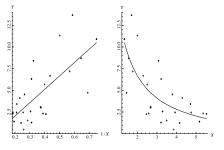
Inflation rate Y_i , and unemployment rate X_i , with regression line. Sample 1979 to 2005.

- ► The linear Phillips curve: $Y_i = 10.5 1.83X_i$
- $\hat{\beta}_1 = -1.83, R^2 = 0.43$
- ightharpoonup i-t rate of u = 4.36 %
- ▶ natural rate = 5.73 %



Log scale for X_i to the left, percent scale to the right

- ► The lin-log Phillips curve: $Y_i = 11 5.87 \ln X_i$
- $\hat{\beta}_1 = -5.87, R^2 = 0.49$
- ► Note the (small) increase in R² Proof of better fit than linear?
- ightharpoonup i-t rate of u = 4.25 %
- ▶ natural rate = 6.5 %



▶ The Phillips curve with inverse X $Y_i = -1 + 15.39(1/X_i)$

Non-linear variable transformations

 $\hat{\beta}_1 = 15.39, R^2 = 0.49$

i-t rate of u = 4.36 %natural rate = 14.9 %

Phillips curve with 1/X as regressor to the left. Ordinary scale to the right.

Non-linear variable transformations

- As said, these were just illustrations of the great flexibility that we have by making relevant choices of functional forms.
- ▶ The choice of functional form is once of the most important decisions that we make in econometric modelling
- ▶ Will return to the example of Norwegian PCMs later, when we have developed the statistical inference theory for regression models.