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Regression with transformed variables I

I References: See Lecture 1

I Transformation of the data prior to fitting the regression line
is often used in applied work.

I The greatly extends the relevance of OLS estimation to real
world data

I Distinguish between

I Linear transformations
I Non linear transformations (“flexible functional forms”)

I In this lecture we give an introduction to some of the
possibilities that we have at our disposal
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De-meaning

De-meaning I

I We have already encountered de-meaning of the regressor X
as a way of simplifying the derivations of the OLS estimates.

I Now, consider de-meaning both variables:

Y ∗i = Yi − Ȳ

X ∗i = Xi − X̄

where the transformed variables are denoted Y ∗i and X ∗i
(i = 1, 2, . . . , n) .
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De-meaning

De-meaning II

I Based on the same argument as in Lecture 1, the best
predictor of Y ∗i given X ∗i is

Ŷ ∗i = β̂∗0 + β̂∗1X ∗i (1)

OLS estimation (min.sum of sq.residuals) gives

β̂∗0 = Y ∗ − β̂1X ∗

β̂∗1 =
∑n

i=1(X
∗
i − X ∗)Y ∗i

∑n
i=1(X

∗
i − X ∗)2
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De-meaning

De-meaning III
I By construction, Y ∗ = X ∗ = 0, and:

β̂∗0 = 0 (2)

β̂∗1 =
∑n

i=1(X
∗
i )Y

∗
i

∑n
i=1(X

∗
i )

2
=

∑n
i=1(Xi − X̄ )(Yi − Ȳ )

∑n
i=1(Xi − X̄ )2

≡ β̂1 (3)

Insights to take away from this:

1. If you de-mean both the regressand and the regressor, the
regression line has intercept 0

2. The regression line goes trough the origin of the scatter plot
between Y ∗i and X ∗i

3. When Y ∗i is regressed on X ∗i we can therefore drop the
intercept/constant from the regression, and write the best
predictor as Ŷ ∗i = β̂∗1X ∗i where β̂∗1 ≡ β̂1as shown.
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De-meaning

WARNING!!!!!!

I Unless both variables are de-meaned, you should ALWAYS
include the intercept in the regression line. Otherwise you do
not get the best predictor for Y given X , the estimate of the
slope coefficient will also be wrong.

I Specifically, you can show as an exercise that if Yi is regressed
on Xi with no intercept, the OLS estimate of the slope
parameter becomes

β̂no−i
1 =

∑n
i=1 YiXi

∑n
i=1 X 2

i

6= β̂1

unless the means of Yi should just happen to be zero!
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Scaling and standardization

Scaling I

I Scaling is done by multiplying the original data with the
known factors ωy and ωx .

I For example: change units from thousand to million or billion.
Let Y ω

i and X ω
i denote the scaled variables

Y ω
i = ωyYi

X ω
i = ωxXi

I By deriving the OLS estimates β̂ω
0 and β̂ω

1 you can show that
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Scaling and standardization

Scaling II

β̂ω
0 = ωy β̂0 (4)

β̂ω
1 =

ωy

ωx
β̂1 (5)

I Scaling of one or both of the variables will affect the OLS
estimates

I If for example Xi is in thousands, and X
ω

i is in millions then
ωx = 0.001.

I If ωy = 1, no scaling of Yi , β̂1 = 0.005 is changed to β̂ω
1 = 5

after the scaling.
I If on the other hand, ωx = ωy , the slope estimate is

unchanged by the scaling, but the intercept changes.
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Scaling and standardization

Standardized variables I

Finally imagine first de-meaning Yi and Xi , and second scaling the
de-meaned variables by

ωy =
1

σ̂Y

ωx =
1

σ̂X

where σ̂y and σ̂x are the empirical standard deviations

σ̂Y =

√
1

n

n

∑
i=1

(Yi − Ȳ )2, and σ̂X =

√
1

n

n

∑
i=1

(Xi − X̄ )2
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Scaling and standardization

Standardized variables II
Y ∗ωi =

Yi − Ȳ

σ̂y

X ∗ωi =
Xi − X̄

σ̂x

The standardized regression becomes

Ŷ ∗ωi = β̂∗ω1 X ∗ωi (6)

I Since standardization is a combination of de-meaning and
scaling we have that

β̂∗ω1 =
ωY

ωX
β̂1 =

σ̂X
σ̂Y

β̂1 =
σ̂X
σ̂Y

σ̂XY
σ̂X

= rXY (7)

I With standardized variables, regression is reduced to
“correlation analysis”.
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Estimating non-linear relationships I

I If OLS can only be used to fit linear relationships between Y
and X , the relevance of the method will be very limited.

I However, by applying non-linear transformations of Yi and Xi

before estimation, we can estimate many interesting
non-linear functions with OLS.

I Using the transformed variables the model is linear in the
parameters β0 and β1.

I In this way we obtain great flexibility in fitting different
non-linear relationships between Y and X .

I In applied econometrics, we often refer to non-linear data
transformations as the choice of functional form.
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Some popular functional forms

Quadratic transformation of the regressor I

Assume that we have an theoretical non-linear relationship between
Y and X :

Y = β1 + β1X 2

This can be put into regression form by regressing Yi on the
squared Xi :

X ∗i = X 2
i

Hence we have

Ŷi = β̂0 + β̂1X ∗i
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Some popular functional forms

Quadratic transformation of the regressor II

where β̂0 and β̂1are calculated with the use of the OLS formulae
(using X ∗i in the place of Xi ). The estimated derivative in this
regression depends on X :

∂̂Y

∂X
= 2β̂1Xi

which is increasing in Xi if β1 > 0.

I If Y is a measure of costs, and X is a measure of production
(or of capacity), this model may be relevant to estimate a
cost-function with increasing marginal cost

I See HGL Figure 2.13 and 2.14
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Some popular functional forms

Log-linear models I

If one or both of the variables are log transformed, we speak of
log-linear models:

i Y = β0 + β1 ln X

ii ln Y = β0 + β1X

iii ln Y = β0 + β1 ln X

I The two first are sometimes called semi-logarithmic models.

I The third is sometimes called the log-log model.

I All three relationships can be formulated as linear regressions
and OLS estimation can be applied.

I The differences lies in the interpretation.
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Some popular functional forms

Log-linear models II
I i), ii) and iii) will have

I different derivatives,

I different elasticites (Elxy)

I and different semi-elasticities( ∂y
∂x

1
y )

∂̂y
∂x

∂̂y
∂x

1
y Êlxy

i β̂1
1
X β̂1

Y
X β̂1Y

ii β̂1Y β̂1 β̂1X

iii β̂1
Y
X β̂2

1
X β̂1

Phillips curve models (PCMs) for Norway provides some
illustrations
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Inflation rate Yi , and unemployment
rate Xi , with regression line. Sample

1979 to 2005.

I The linear Phillips curve:
Yi = 10.5− 1.83Xi

I β̂1 = −1.83, R2 = 0.43

I i-t rate of u = 4.36 %

I natural rate = 5.73 %
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Log scale for Xi to the left, percent
scale to the right

I The lin-log Phillips curve:
Yi = 11− 5.87 ln Xi

I β̂1 = −5.87, R2 = 0.49

I Note the (small) increase
in R2 Proof of better fit
than linear?

I i-t rate of u = 4.25 %

I natural rate = 6.5 %
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Phillips curve with 1/X as regressor to
the left. Ordinary scale to the right.

I The Phillips curve with
inverse X
Yi = −1 + 15.39(1/Xi )

I β̂1 = 15.39, R2 = 0.49

I i-t rate of u= 4.36 %

I natural rate = 14.9 %
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I As said, these were just illustrations of the great flexibility
that we have by making relevant choices of functional forms.

I The choice of functional form is once of the most important
decisions that we make in econometric modelling

I Will return to the example of Norwegian PCMs later, when we
have developed the statistical inference theory for regression
models.
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