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References to Lecture 4 and 5

I Hill, Griffiths and Lim (HGL)

I Chapter 2 and 3

I Bårdsen and Nymoen (BN)

I Kap 5.1-5.5
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Model specification I

We follow convention and formulate our first model as a linear
relationship with three parts

1. Dependent variable, Yi

2. Economic theory (the explanation): β0 + β1Xi

3. A random disturbance term, ε i

Yi = β0 + β1Xi + ε i , i = 1, 2, ..., n (1)

I {Yi , ε i} i = 1, 2, . . . , n are random variables

I {Xi} i = 1, 2, . . . , n are n values of a non-random variable.

I Since ε i → Yi , it is clear that the Yi variables “inherit” their
random properties from the disturbance term ε i .
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Model specification II

I The non-random (deterministic variable) Xi only affects the
expectation E (Yi ).

I (1) is a generalization of the model we used to make inference
about E (Yi ) at the end of Lecture 3:

I In that model, β1 = 0 was imposed a priori. In (1) we want to
estimate β1 (together with β0) and make inference about β1.

I β0 and β1 are the unknown parameters of the equation.
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Model specification III
I As mentioned already in Lecture 2, the interpretation of the

slope coefficient β1 in particular depends on how Y and X are
measured:

I If, for example, Y is expenditure on a certain good in kroner
and X is total consumption expenditure in kroner, then β1 is
the derivative of Y with respect to X

I If Y and X are variables that have been transformed to the
natural logarithms of the corresponding kroner expenditures,
then the interpretation of β1 changes to elasticity.

I HGL cover many of these issues in Ch 4, including R2, and
the spilt of total sum of squares into explained sum of squares
and residual sum of squares, that we have already covered,
since their role is to characterize the regression line’s fit to a
given sample.
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Re-parameterisation of the equation I

I The following re-parameterisation of (1) is often useful:

Yi = α + β1(Xi − X̄ ) + ε i , i = 1, 2, ..., n (2)

where

α ≡ β0 + β1X̄ , X̄ =
1

n ∑n

i=1
Xi

I The “trick” is the same as the one we used for in Lecture 1
when Yi was simply given numbers.

I It is a valid operation also in the context that we are in now,
where Yi is a random variable which is function of the random
variable ε i .
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Re-parameterisation of the equation II

I The point is that the disturbance ε i is unaffected. It is only
the parameters of the equation that is affected (and only the
constant term in this case).

I Therefore, (2) is a re-parameterisation of (1).
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RM1—econometric specification

Yi = β0 + β1Xi + ε i ≡ α + β1(Xi − X̄ ) + ε i , i = 1, 2, . . . , n

a. Xi are fixed numbers, (i = 1, 2, . . . , n)

b. E (ε i ) = 0, ∀ i , (“for all i”)

c. Var (ε i ) = σ2, ∀ i

d. Cov (ε i , εj ) = 0, ∀ i 6= j

e. α, β0, β1 and σ2 are constant parameters

For the purpose of statistical inference we will often assume
normally distributed disturbances:

f. ε i ∼ N
(
0, σ2

)
.
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Comments to the econometric specification I

b., c. and d. are often referred to as the Classical assumptions
about the regression disturbance. We will also follow that
convention.
b. E (ε i ) = 0, Note that if E (ε i ) = b 6= 0, then the model can be
re-stated as

Yi = β0 + b︸ ︷︷ ︸
β
′
1

+ β1Xi + ε i − b︸ ︷︷ ︸
ε
′
i

with assumptions b. - f. holding for ε
′
i .

Despite the warning at the bottom of page 46 in HGL, assumption
b. E (ε i ) = 0 therefore seems to be innocuous, as long as we are
not interested in the intercept β0 per se.
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Comments to the econometric specification II

c. Var (ε i ) = σ2, ∀ i
This assumption is called Homoskedasticity.

Var (ε i ) 6= σ2, ∀i

is called Heteroskedasticity.
Heteroskedasticity is not an innocuous assumption!
To understand why, we need to develop the theory of estimators
for RM1.

10 / 34



Introduction Econometric specification of RM1 OLS estimates and estimators Properties of estimators

Comments to the econometric specification III

d. Cov (ε i , εj ) = 0, ∀ i 6= j
Failure to meet this assumption about uncorrelated disturbances
also has serious consequences.
For cross-section data, Cov (ε i , εj ) 6= 0 may be called
“cross-section dependence”.
For time series data, the case of

Cov(εt , εt−s) 6= 0 for s = ±1,±2, ....

is called serial correlated errors or autocorrelated errors.
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Comments to the econometric specification IV

DIY exercise 1:

1. Show that when assumption a. is true, then d. can
alternatively be written as:

E (ε i εj ) = 0, ∀ i 6= j

2. Show that the model specification implies

E (Yi ) = α + β1(Xi − X̄ )

Var(Yi ) = Var(ε i ) = σ2, ∀i

Cov(Yi , Yj ) = 0, ∀i 6= j
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OLS estimates I

I A given data consists of one realization (value) of each of the
n random variables Yi , i = 1, 2, . . . , n which can write
y1, y2, . . . , yn and the n fixed values x1,x2,. . . , xn of the
explanatory variable.Use of OLS estimation on a data set
(Lecture 2) result in the OLS estimates:

β̂1 =
∑n

i=1(xi − x̄)yi
∑n

i=1(xi − x̄)2
, (

n

∑
i=1

(xi − x̄)2 > 0)

α̂ = ȳ

β̂0 = ȳ − β̂1x̄

I These estimates are sample specific numbers.
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OLS estimates II

I We see that the only difference from Lecture 2 is that we have
used lower case letters to represent values of the variables.

I However, we can imagine that we get access to a second
sample, with another realization of the n stochastic variables
Yi .

I What would you do in terms of estimation?
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OLS estimates III

I Apply OLS again!

I And again for a third and fourth realization of the random
variables!
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I Hence we can define a stochastic variable β̂1 which is a
function of the random variables Yi , i = 1, 2, . . . , n

β̂1 =
∑n

i=1(Xi − X̄ )Yi

∑n
i=1(Xi − X̄ )2

=
n

∑
i=1

wiYi (3)

where

wi =
(Xi − X̄ )

∑n
i=1(Xi − X̄ )2

(4)

I The interpretation is:

ε i
random

→
(2)

Yi →
n

∑
i=1

wiYi =
∑n

i=1(Xi − X̄ )Yi

∑n
i=1(Xi − X̄ )2

→ β̂1
random
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I α̂ and β̂0 are also reinterpreted as random variables:

α̂ = Ȳ , (5)

β̂0 = α̂− β̂1X (6)

I We see that α̂, β̂0 and β̂1 take a double-meaning, as
estimates and estimators (random variables).

I It will be clear form the context which interpretation we have
in mind.

I For the same reason, Yi from now on takes the same double
meaning as a random variable and a realization of that
variable
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Expectation and bias I

I We are interested in E (β̂1) since we want to evaluate the bias
E (β̂1 − β1)

I β̂1 is a linear function of the Yi variables. The OLS estimator
is a linear estimator.

I Can therefore find E (β̂1) by use of the rules for expectation.

Re-write the estimator as:

β̂1 =
n

∑
i=1

wi (β0 + β1Xi + ε i ) = β1 +
n

∑
i=1

wi ε i
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Expectation and bias II
using

n

∑
i=1

wi =
1

∑n
i=1(Xi − X̄ )2

n

∑
i=1

(Xi − X̄ )i = 0

n

∑
i=1

wiXi =
1

∑n
i=1(Xi − X̄ )2

n

∑
i=1

(Xi − X̄ )iXi = 1

Take the expectation through;

E (β̂1 − β1) = E

(
n

∑
i=1

wi ε i

)
=

n

∑
i=1

wiE (ε i ) = 0

Hence
E (β̂1 − β1) = 0, unbiasedness of β̂1
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Variance I

Var(β̂1) = Var(β1 +
n

∑
i=1

wi ε i ) = σ2
n

∑
i=1

w 2
i =

σ2

∑n
i=1(Xi − X̄ )2

If we re-introduce the empirical variance of the deterministic X :

σ̂2
X =

1

n

n

∑
i=1

(Xi − X̄ )2

(alternatively divide by (n− 1)) we get the compact expression

Var(β̂1) =
σ2

nσ̂2
X
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Variance II

1. Larger disturbances variance increases Var(β̂1) and therefore
estimation uncertainty

2. Large variability in the explanatory variable reduces Var(β̂1)

3. More observations reduce Var(β̂1)
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Intercept estimator properties I

I You can show that

E (α̂) = α (7)

E (β̂1) = β1 (8)

and

Var(α̂) =
σ2

n

Var(β̂0) = Var(α̂) + X̄ 2Var(β̂0)− 2X̄ Cov(α̂, β̂0)

=
σ2

n
(1 + X̄ 2 1

σ̂2
x

) (9)
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Intercept estimator properties II

Var(β̂0) makes use of

Cov(α̂, β̂1) = 0 (10)

I Why is (10) true? See BN Appendix 5.A for a proof (English
translation on the web-page).

I In the exercises to Seminar 2 you are asked to find the
expression for Cov(β̂0, β̂1).
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Summing up so far

I For RM1, and before invoking the assumption about normality
of ε i , we have that the OLS estimators for β0,α and β1 are:

I Unbiased (On average β̂1 − β1 is zero, for example)

I And have well defined variances and covariances that
depend on σ2, the sample size n, and how much variation
there is in X .
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Gauss-Markov theorem I

As noted, the OLS estimator β̂2 is a linear estimator

β̂1 =
n

∑
i=1

wiYi , with wi =
(Xi − X̄ )

∑n
i=1(Xi − X̄ )2

which is unbiased.

I The Gauss-Markov theorem says that there is no other
estimator for the parameter β1 in RM1 that is linear and
unbiased and that has lower variance than β̂1 for a given
sample size n

I The same is true for β̂0 (and α̂). We say that for RM1, the
OLS estimators are best linear unbiased estimators (BLUE)

I There are proofs is in both books,:
I HGL appendix 2.F, BN: kap 5.3.4
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Gauss-Markov theorem II
I so we only outline the argument here, and leave the details for

self study.

That other estimator for β1 takes the form

β̂
′
1 =

n

∑
i=1

ciYi , with fixed weights ci

We can define δi

δi = ci − wi , i = 1, 2, . . . , n

as a measure of the difference between the two set of weights.
We require

E (β̂
′
1) = β1
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Gauss-Markov theorem III

which implies the following for δi :

n

∑
i=1

δi = 0

n

∑
i=1

δiYi = 0

which allows us to write

Var(β̂
′
1) = σ2

[
n

∑
i=1

w 2
i +

n

∑
i=1

δ2
i

]

so that
Var(β̂

′
1) > Var(β̂1) unless δi = 0
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Gauss-Markov theorem IV

and in that case

β̂
′
1 ≡ β̂1.
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Estimating the variance of the disturbance I

I The OLS principle itself—the normal equation (1ocs) from
Lecture 2—does not give an estimator for σ2.

I But it is natural to use the sum of squares of the OLS
residuals, i.e.,

n

∑
i=1

ε̂2
i

with ε̂ i interpreted as random variable.

ε̂ i = Yi − α̂− β̂1(Xi − X̄ )

29 / 34



Introduction Econometric specification of RM1 OLS estimates and estimators Properties of estimators

Estimating the variance of the disturbance II

I It is possible to show that

∑n
i=1 ε̂2

i

σ2
∼ χ2(n− 2) (11)

where the loss of one degree of freedom compared to the case
in Lecture 3 where the model was

Yi = β0 + ε i
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Estimating the variance of the disturbance III

has to do with the fact we now have two restrictions between
the n random variables in the form of the two normal
equations:

n

∑
i=1

ε̂ i = 0 (12)

n

∑
i=1

ε̂ i (Xi − X ) = 0. (13)
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Estimating the variance of the disturbance IV

I Because of the χ2(n− 2) distribution in (11) we have

σ̂2 =
σ2

n− 2

[
∑n

i=1 ε̂2
i

σ2

]
=

∑n
i=1 ε̂2

i

n− 2

is an unbiased estimator of σ̂2 given the regression model that
we have formulated.

I Show!

I What is the expression for Var(σ̂2)?
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Checking the results by simulation

I We can use Monte Carlo simulation to “check” the theory
that we have developed

I See Appendix 2G in HGL (the explanation of the
methodology) or Kap 5.3.1 in BN

I A note about Monte Carlo simulations on the course web
page [POSTPONED TO LATER]

I Two small Monte Carlo’s in the seminars!
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A model of GDP per capita growth

1840 1860 1880 1900 1920 1940 1960 1980 2000 2020

1000 00

2000 00

3000 00

G DP pe r ca pita  in N orwa y (million fixed krone r)

1840 1860 1880 1900 1920 1940 1960 1980 2000 2020

10

11

12

13 Log GD P pe r ca pita  in N orw ay.

I Blue graph: GDP per
capita Y against time, t

I t is deterministic

I Approx non-linear Y (t)
by Y = AegY t+εt

I εt is a random error

I Red graph shows ln Y
against time
ln Yt = ln A + gy t + εt
is an example of RM1.
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