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References to Lecture 3 and 6

Lecture 3 reviewed the statistical theory used in Lecture 4 and 5
(Regression model with determinsitc regressor (RM1))
Lecture 6 extends the statistical theory that is used in the
Regression model with stochastic regressor (RM2), that will be the
main “working-horse” for the rest of the course

I HGL: Probability Primer, Appendix B1-B4, C2-C6

I BN: Kap 4
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Conditional expectation function

Definition of conditional expectation I

I To save some time and space we concentrate on the
continuous random variable case.

I There is seminar exercise about the discrete variable case.

I Using the concepts that we reviewed in Lecture 3: The
conditional probability density function (pdf) for Y given
X = x is

fY |X (y | x) = fXY (x , y)

fX (x)
(1)

where fXY (x , y) is the joint pdf for the two random variables
X and Y , and fX (x) is the marginal pdf for X .
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Conditional expectation function

Definition of conditional expectation II

Definition (Conditional expectation)

Let Y be the random variable with conditional pdf fY |X (y | x) .
The conditional expectation of Y is

E (Y | x) =
∫ ∞

−∞
yfY |X (y | x) dy = µY |x .
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Conditional expectation function

Conditional expectation function I

I For a given value of X = x the conditional expectation
E (Y | x) is deterministic, it is a number.

I We can however consider the expectation of Y for the whole
value set of X . In this interpretation, E (Y | X ) is a random
variable with E (Y | x) as a value for X = x .

I This line of reasoning motivates that the conditional
expectation function E (Y | X ) is a function of the random
variable X :

E (Y | X ) = gX (X )

5 / 25



Introduction Conditional expectation Asymptotic theory

Conditional expectation function

Conditional expectation function II
I If the conditional expectation function is linear, we can write

it as
E (Y | X ) = µY |X = β0 + β1X (2)

much like the “systematic” or “explanatory part” of a
regression model.

I It is this idea that we will utilize when we formulate the
regression model for stochastic regressors in Lecture 7 and
onwards.

I In this lecture first show the specification of
E (Y | X ) = gX (X ) when the joint pdf of X and Y is
normal.

I This is a special case, but it is a relevant one, since the
normal distribution in often assumed in econometric models
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Conditional expectation function

Conditional expectation function III

I We next discuss important properties of conditional
expectation functions more generally. For example:

I The law of iterated expectations
I Linear independence of X and Y when E (Y | X ) = constant

I The second part of the lecture reviews some results from
asymptotic theory that become relevant for the model with
regressors that are random variables.
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Normal distribution

Bivariate normal distribution

I Let the marginal expectations of X and Y be E (X ) = µX and
E (Y ) = µY .

I The variances are σX , σY , and σXY is the covariance
I Correlation coefficient: ρXY = σXY

σY σX

Using the “standardized” notation zY = (y − µY )/σY and
zX = (x − µX )/σX , the bivariate normal pdf is can be written as:

fXY (y , x) =
1

σY σX2π
√
(1− ρ2XY )

× exp

[
−1

2

(
z2Y − 2ρXY zY zX + z2X

)
(1− ρ2XY )

]
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Normal distribution

From the joint density fXY (y , x) we can obtain the marginal pdf
fX (x) (see Lect 3). In this case it becomes:

fX (x) =
1

σX
√

2π
exp

[
−1

2

(
x − µX

σX

)2
]

Inserting in (1) and simplifying, fY |X (y | x) can be written as

fY |X (y | x) = 1√
2πσ2

Y (1− ρ2XY )
× exp

−
(
y−µY

σY
− σXY

σY σX

x−µX

σX

)2
2 (1− ρ2XY )


=

1√
2π
(

σ2
Y − σ2

Y
(σXY )

2

σ2
Y σ2

X

) × exp

−1

2

[
y −

(
µY − σXY

σ2
X

µX + σXY
σ2
X
x
)]2

σ2
Y − σ2

Y
(σXY )

2

σ2
Y σ2

X

 .
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Normal distribution

We can write

y −
(

µY −
σYX
σ2
X

µX +
σYX
σ2
X

x

)
as

y − µY |X

where

µY |X = µY −
σYX
σ2
X

µX︸ ︷︷ ︸
β0

+
σYX
σ2
X︸︷︷︸

β1

x

= β0 + β1X (3)

Finally, define the conditional variance as

σ2
Y |X = σ2

Y (1−
σ2
YX

σ2
Y σ2

X

) (4)
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Normal distribution

Summing up:
I The conditional pdf for Y is

fY |X (y | x) = 1√
2πσ2

Y |X

× exp

{
−1

2

[
y − µY |X

]2
σ2
Y |X

}
(5)

(5) is a normal pdf with two parameters: the expectation µY |X
in (3) and the variance σ2

Y |X in (4).
I The conditional expectation function for Y given X can be

written as in (2):

µY |X = E (Y | X ) = β0 + β1X with coefficients:

β0 = µY −
σYX
σ2
X

µX

β1 =
σYX
σ2
X

when the variables X and Y are jointly normally distributed.
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The general law of iterated expectations

The law of iterated expectations I

I Let Y and X be two random variables and let E (Y | X ) be a
conditional expectation function (not necessarily linear)

I the Law of iterated (or double) expectations says that:

E [E (Y | X )] = E (Y ) . (6)

I In HGL, this law is presented in Appendix B 1.7 and B.2.4

I In BN you give a proof by solving exercise 4.12

I The interpretation of (6) is that if we take the expectation
over all the values that we first condition on, we obtain the
unconditional expectation.

I Heuristically: If we use the probabilities of all the values that
X can take, it does not matter what the value of X is.
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The general law of iterated expectations

Linearity of conditional expectations

I For all operations where we condition on X , we treat X as if
it was a deterministic number.

I For example: E [X | X ] = X and E
[√

X | X
]
=
√
X

I This motivates the linearity property of conditional
expectations: For any deterministic function h(X ) :

E [h(X )Y | X ] = h(X )E (Y | X ) (7)

Combined with the Law of iterated expectations, this gives a
powerful result:

E [h (X )Y ] = E {E [h (X )Y | X ]}︸ ︷︷ ︸
Law of Itr Exp

= E [h (X )E (Y | X )] (8)
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The general law of iterated expectations

Linear independence between variables

If the conditional expectation function is constant, and therefore
independent of the conditioning variable, so E (Y | X ) = E (Y ),
then Cov(X ,Y ) = 0.

The proof is by use of (8):

Cov(X ,Y ) = E (XY )−E (X )E (Y ) = E [XE (Y | X )]︸ ︷︷ ︸
(8)

−E (X )E (Y )

Cov(Y ,X ) = 0 if E (Y | X ) = E (Y ).
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The general law of iterated expectations

Conditional expectation in model form I

Often (although not always) the random variable Y can be written
as

Y = E (Y | X ) + ε (9)

where E (ε | X ) = E (ε) = 0,and therefore E (X ε) = 0.

I (9) can be interpreted as using the conditional expectation of
Y given X as a model of Y .

I This results will be an important reference for the econometric
regression models with random variables as regressors (RM2)

I The linear function form of E (Y | X ) is not general, i.e.
E (Y | X ) in (9) may well be a non-linear function.

I Nevertheless, we will concentrate on linear E (Y | X )
functions in our Introductory Econometrics course
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The general law of iterated expectations

Conditional expectation in model form II

I Variable transformations can be interpreted as an effort to
“prepare the data” for the use of a linear conditional
expectation function at the modelling stage

I This is popular among economists, since the regression
coefficients for the transformed variables can usually be given
economic interpretation
(Refer back to Lecture 2, and HGL Ch 4 and BN kap 2)
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n-large analysis

Motivation I

I Already in the discussion of RM1, we have encountered
questions about the statistical properties of the estimators
when “n grows towards infinity”

I A precise answer requires asymptotic analysis

I An alternative is to simulate the asymptotic properties if of
estimators and test statistics by Monte Carlo simulation.

I In this last part of Lecture 6 we review a few of the
elementary concepts and theorems.

I The exposition is not complete, even for elementary
asymptotic analysis, but might serve as a reference point for
further studies.
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Convergence in probability

Probability limit I

Definition (Convergence in probability)

Let {Zn} be an infinite sequence of random variables. If for all
ε > 0

lim
n→∞

P (|Zn − Z | > ε) = 0

Zn converge in probability to the random variable Z . Convergence
in probability is written

Zn
p−→ Z .

The random variable Z is called the probability limit of Zn. A
much used notation is:

plim (Zn) = Z .
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Convergence in probability

Consistency of estimators

We are often interest in situations where Zn converge to a number
cZ , so that

Zn
p−→ cZ .

If an estimator converges in probability to the true parameter
value, it is a consistent estimator.
Assume that θ̂n is an estimator of θ from a sample of n
observations. Let n grow towards infinity. The sequence of
estimators θ̂n is a converging sequence if

plim θ̂n = θ (10)

and (10) then defines θ̂n as a consistent estimator of θ.
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Convergence in probability

Rules for the probability limit (Slutsky’s theorem)
Let the infinite sequences Zn and Wn converge in probability to the
constants cZ and cW . The following rules then hold

plim (Zn +Wn) = plimZn + plimWn = cZ + cW

plim (ZnWn) = plimZn × plimWn = cZcW

plim

(
Zn

Wn

)
=

plimZn

plimWn
=

cZ
cW

.

I In econometrics these rules are much used, because empirical
moments, averages and empirical (co)variances can be shown to
converge in probability to their theoretical counterparts,
expectation and covariance.

I In this way consistency, or inconsistency, can often be shown for a
given estimator, and for a given model specification
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Convergence in probability

Law of large numbers I

Theorem (Weak law of large numbers)

Let Xi be independent and identically distributed variables with
E (Xi ) = µX and 0 < σ2

X < ∞. X̄n = 1
n ∑n

i=1 Xi converges in
probability to µX

plim (X̄n) = µX .
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Convergence in probability

Law of large numbers II

Application: In RM1, the OLS estimator for α is

α̂n = α +
1

n

n

∑
i=1

ε i = α + ε̄n

If the classical assumptions of the model hold, then

plim (ε̄n) = 0

by the Law of large numbers and the OLS estimator α̂n is
consistent:

plim (α̂n) = α
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Convergence in distribution

Convergence in distribution I

I In regression models with stochastic regressors, where the
classical assumptions for the disturbances hold, but where we
don’t invoke the assumption about normally distributed
disturbances, it is possible to show that the distribution
functions of the random variable

√
n
(

β̂1 − β1

)
converge to a

cumulative normal probability distribution.

I Results about convergence in distribution often make use of
the Central Limit Theorem
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Convergence in distribution

Convergence in distribution II

Theorem (Central Limit Theorem)

Let Xi be independent and identically distributed variables with
E (Xi ) = µX and 0 < σ2

X < ∞. The distribution function of the

sequence of standardized averages Zn = X̄n−µX

σX /
√
n
converges to the

cumulative distribution function of the standard normal
distribution, so that {Zn} will converge to the standard distributed

random variable Zn
d−→ Z ∼ N (0, 1) .

Remark: The notation Zn
d−→ Z ∼ N (0, 1) means “converge in

distribution” and should not be confused with:

Zn
p−→ cZ .
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Convergence in distribution

Convergence in distribution III
Application: For the OLS estimator α̂ of α in RM1,

Zn =
√
n
(α̂n − α)

σ
=
√
n

ε̄n
σ

This means that

√
n
(α̂n − α)

σ

d−→ N(0, 1)

since the classical assumptions part of RM1 satisfy the conditions
of the Central Limit Theorem.
We then also have:

√
n(α̂n − α)

d−→ N(0, σ2)

Why do we consider convergence of
√
n(α̂n − α) and not (α̂n − α)?
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