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This note is a translation of Appendix 3.A in BN. We include it as documen-
tation and for completeness. If you are interested in this kind of exercise and can
formulate a more elegant proof, let me know!

With reference to the notation in Lecture 4 we have
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where we have used that
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where we have used α̂ = Ȳ .
Consider the case of n = 2: By inspection, the expression after the second

equality sign becomes
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i.e., the sum of all cross products between Yj and εi(Xi − X̄). A typical term in∑n
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when i 6= j
when i = j (n times),

By this argument, we see that the expression for Cov
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simplifies to
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