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1 Repeated sampling

Section 2.4.3 of the textbook by HGL is called Repeated sampling. The point is that
by drawing repeated samples of size 40 from a large population of households, they
repeat the food expenditure regression several times (they do 10 replications).The
average of the 10 OLS estimates of the slope parameter is 9.7.The point is that
the average 9.7 is an estimate of the expectation of the OLS estimator of the slope
coefficient.

2 Monte Carlo simulation and analysis

Repeated sampling is costly in practice, but we can do something similar at a very
low cost: We can use the computer to generate a number of data sets (call it M),
each of sample length n, and then estimate the regression model on all M data sets
and average all of the M estimates of the slope parameter β1.

The result of the experiment is that we have M OLS estimates β̂1j (j =
1, 2, . . . ,M). Since the data sets are independent (the computer takes care of that),
the average

β̃1 =

∑M
j=1 β̂1j

M
.

will come close to the true E(β̂1) when M is large. Note that we can make a reference
to the Law of large numbers (Lecture 6) here: Because the experiment we perform
on the computer satisfies the assumptions of the Law of large numbers we can use
that

plim β̃1 = E(β̂1), M −→∞

This means that by repeated sampling and estimation, we obtain a sequence of
estimates β̃1 that has the true expectation of the OLS estimator β̂1 as its probability
limit. This is the main principle of a Monte Carlo analysis.
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3 “Checking” theoretical results by Monte Carlo

analysis

HGL mentions Monte Carlo experiment on page 68, as a way of “checking” and
getting intuituion about the theoretical statistical results. HGL has also a very
instructive appendix 2G about Monte Carlo simulations applied to the simple re-
gression model (the case with fixed/non-random X, our RM1 ).

As an example, the theory of the regression model states that if the classical
assumptions of the regression model hold, the OLS estimator β̂1 is unbiased :

E(β̂1 − β1) = 0

We can use Monte Carlo analysis to check this theoretical result. To do that,
we instruct the computer to generate data in accordance with the regression model
with classical assumptions.

Since the our regression model then is the data generating process (“we have

the true model”), we expect to find that
∼
β1 ≈ β1 for a reasonably large M , (e.g.,

20) and that the approximation only gets better if M becomes really large.
In so called recursive Monte Carlo analysis we keep the number of replications

M fixed and calculate the whole sequence of β̃1(n) estimates (from small n to large n

(e.g., n = 100), to check that the bias β̃1(n)−β1 disappears as the sample size grows

larger. A plot of the bias β̃1(n) − β1 as a function of nwill illustrate the consistency
property:

plim β̃1(n) = β1 n −→∞

of the OLS estimator under the classical assumptions of the regression model.
When the number of replications is large, it is also instructive to plot the

distributions for different sample sizes:
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Monte Carlo analysis: Two distributions (for n = 47and n = 500) of the

OLS estimator β̂1of the slope coefficient in the case where the classical

assumptions of the regression model hold, and X is non-random. The true

value of β1is 0.80.

4 Monte Carlo analysis in the course

There will be a little bit of Monte Carlo analysis for you to do in the exercises to
seminar 2 and 4.

In the lectures there will occasionally be plots like the one above (or similar
for recursive Monte Carlo which entails plotting distributions for or all n, not only
n = 47). The point will always be to illustrate analytical results (In this case that
would be unbiasedness, variance of the estimator declining with n, and suggesting
the asymptotic property of consistency).
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