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References to Lecture 1 and 2

I Stock and Watson (SW)

I Ch 1-2;

I Bårdsen and Nymoen (BN)

I Kap 4-4.5
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The goal of econometrics

I The Econometric Project: Use real world data and statistical theory
to obtain empirical knowledge about relationships that hold outside
the given sample.

I Statistical inference is a main concept: Generalization of empirical
evidence from a concrete and limited data set “to the population”.

I Inference can be about a parameter in a economic relationship (the
marginal propensity to consume in the consumption function) or
about the (treatment) effect or a policy reform—a question about a
causal effect as noted on page 48 in S&W.

I Econometric models are the hallmark of econometrics
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Econometrics is a “combined discipline” I

I Ects. combine knowledge
and skill from three main
areas

I Several of the
intersections are of
interest, but

I Area 4 represents
Econometric Models
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Historical reference

A defining contribution to modern econometrics is
The Probability Approach to Econometrics by Trygve Haavelmo
from 1944.
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Data types I

I Cross section: A data set where the variables vary across n
individuals i = 1, 2, . . . , n

I Time series: A data set where the variables vary over T time
periods: t = 1, . . . ,T

I Panel data: Variation both across individuals and over time.

There are other distinctions between data types as well’

I Micro/macro

I Experimental/non-experimental
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Data types II

I In this course we will concentrate on the “common ground”
between models for cross-section and for time series data

I Will use notation like (Yi ,Xi ) i = 1, 2, . . . , n for the most

I But will use (Yt ,Xt) t = 1, 2, . . . ,T when it is relevant to be
precise about time-series data for example

I For panel data we need both subscripts as in (Yit ,Xit)
i = 1, 2, . . . , n, t = 1, 2, . . . ,T
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Random events and random variables I

I A random variable attaches a value to each single event of an
experiment.

I The “experiment” can be literal (like in coin tossing).

I In econometrics we regard the real world data as if they were
generated by a large experiment, that can be analysed with
the language of mathematical statistics.

I An event represented by a random variable can be a simple
result (boy/girl child) of an experiment, or a composite result
(number of girls from 3 births).

I A random variable is therefore a function of the simple events
of an experiment.
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Random events and random variables II

Definition
A random variable is a function with numerical values defined over
a value set (”utfallsrom”)

I For the variable “Number of girls” the value set is {0, 1, 2, 3}.
I A discrete random variable can take a finite number of values.

I A continuous random variable can take an infinite number of
values.

I The terms random variable and stochastic variable are
synonyms
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Distribution functions

Cumulative distribution functions I

Let X denote a random variable (discrete or continuous) and x a
value of that variable.

Definition (Cumulative distribution)

The cumulative distribution function (cdf) FX (x) gives the
probability Pr that a random variable X is less than or equal the
outcome x :

FX (x) = Pr (X ≤ x) .

I For a discrete variable, the cdf has a characteristic
step-function shape, starting in 0 and increasing in steps until
it reaches the value 1 for the highest value in the value set.
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Distribution functions

Cumulative distribution functions II

I The change in the discrete cdf takes place at the point where
the discrete variable goes from a lower to a higher level. The
change in the cdf corresponds to the probability distribution
which gives the probability px for a value x :

px = fX (x)

with properties

I 0 ≤ px ≤ 1
I ∑x px = 1

I For a continuous variable, the cdf is continuous from the right.
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Distribution functions

Cumulative distribution functions III

I The probability of a given value is zero. To represent the
change in a continuous cdf the probability density function
(pdf) is used:

fX (x) ≥ 0 ∀ (”for all”) x ,

The pdf is scaled in such a way that the area under the
function is 1: ∫ ∞

−∞
fX (x) dx = 1.

The probability for P(X ≤ a) is then

Pr(X ≤ a) = FX (a) =
∫ a

−∞
fX (x) dx .
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Distribution functions

Cumulative distribution functions IV

Conversely:

fX (x) =
d

dx
P (X ≤ x)

confirming that the pdf fX (x) represents the change in the
cdf.
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Moments of distributions

Expectation
If X a discrete random variable, the expectation is

µX = E (X ) =
k

∑
i=1

xi fX (xi )

If X is a continuous random variable:

µX = E (X ) =
∫ ∞

−∞
xfX (x) dx

Rules for the expectation

1. E (a) = a , for a constant a

2. E (bX ) = bE (X ) = bµX , for a constant b

3. E (a+ bX ) = E (a) + E (bX ) = a+ bµX

4. E (∑n
i=1 Xi ) = ∑n

i=1 E (Xi ) = ∑n
i=1 µXi

for n random variables

See Key Concept 2.3 in SW
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Moments of distributions

Variance and standard deviation

σ2
X = var (X ) = E

[
(X − µX )

2
]

σX = sd (X ) =
√

var (X )

Note var (X ) can be written as

var (X ) = E
[
(X − µX )

2
]
= E

(
X 2 − 2XµX + µ2

X

)
= E (X 2)−µ2

X

This seem to imply that var (X ) can be negative! Is that correct?
Rules for the variance:

1. var (a) = 0
2. var (bX ) = b2Var (X ) = b2σ2

X

3. var (a+ bX ) = b2Var (X ) = b2σ2
X

I These results (and generalizations, see below, and Key
Concept 2.3 in SW) are particularly useful because we often
are interested in linear functions

I For example
Y = 2000 + 0.8X

on page 64 of S&W.
I If X is a discrete random variable with µX = 1.25 and

σX = 1, what is µY and σ2
X ?
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Moments of distributions

Standard normal distribution

N(0,1)

­5 ­4 ­3 ­2 ­1 0 1 2 3 4 5 6

0.1

0 .2

0 .3

0 .4

N(0,1)

cdfN(0,1)

­5 ­4 ­3 ­2 ­1 0 1 2 3 4 5 6

0 .25

0 .50

0 .75

1 .00
cdfN(0,1)

I Compare figure 2.5 and figure 2.6 in SW
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Moments of distributions

Skewness and kurtosis
I The degree of non-symmetry in a distribution, skewness, is

measured by the third moment:

Skewness =
E
[
(X − µX )

3
]

σ3
X

I Kurtosis (the fourth moment)

Kurtosis =
E
[
(X − µX )

4
]

σ4
X

I The Normal distribution is often used as a reference. It has
Skewness = 0 and Kurtosis = 3.

I Kurtosis > 3 impliesfat-tails, or heavy-tails
I Investment strategies or prediction models that assume a

normal distribution when the distribution is in fact,
heavy-tailed, can lead to financial losses and forecast failures. 18 / 58
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Moments of distributions

A black swan I

I A black swan may be rare

I but less rare than once
believed

I Excess kurtosis
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Moments of distributions

Normal and fatter tails I

N(0,1)
t(10)

t(2)

­5 ­4 ­3 ­2 ­1 0 1 2 3 4 5 6

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

√√

N(0,1)
t(10)

t(2)
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Moments of distributions

Normal and fatter tails II

I Normal pdf cf Figure 2.5

I Together with pdf for t(2) and t(10) with two black swans
indicated
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Moments of distributions

A flock of black swans

I A flock of black swans

I Is more like a location-shift the distribution—a shift in the
expectation

I Can be a more useful metaphor in economics

22 / 58



Introduction Random variables Special distributions Multivariate distributions Moments of a function of a variable

Moments of distributions

A flock of black swans I
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Functions of random variables

The distribution of a function of a variable I

We are often interested in the distribution of a function g(X ) of
the random variable X .

Table: Discrete probability distribution for X

Values for X = xi : 0 1 2 3

Probability fX (xi ):
2
8

3
8

2
8

1
8

If g(X ) = X 2 what is the distribution of Y = (X − 2)2?
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Functions of random variables

The distribution of a function of a variable II

I First: Find the values set of Y : {4, 1, 0, 1}
I The value 1 occurs twice (for xi = 1 and xi = 3)

Values for X = xi : 0 1 2 3

Probability fX (xi ):
2
8

3
8

2
8

1
8

Values for Y = (xi − 2)2: 0 1 4

Probability fY (yi )
2
8

3+1
8

2
8
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Functions of random variables

The distribution of a function of a variable III

I When Y = g(X ) is continuous, and the inverse function
X = g−1(Y ) exists, we have the important result:

fY (y) = fX (x)

∣∣∣∣dg−1 (y)dy

∣∣∣∣ = fX (y ) [X (y)]

∣∣∣∣dg−1 (y)dy

∣∣∣∣ (1)

I The reason we use the absolute value
∣∣dg−1 (y) /dy

∣∣ is that
dg−1 (y) can be a declining function, while a pdf by definition
is non-negative for all values of the random variable

I Below we use (1) to find the pdf of a linear function of a
normally distributed X .
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Normal distribution I

The random variable X has a normal distribution if the pdf is:

fX (x) =
1

σ
X

√
2π

exp

[
−1

2

(
x − µ

X

σ
X

)2
]

, σX > 0 (2)

which we write X ∼ N
(
µ

X
, σ2

X

)
.

X is fully characterised by the 1st and 2nd order moments µX and
σ2
X

.
The standardized normal variable Z is defined by the function

Z = g(X ) =
X − µ

X

σ
X

(3)

We can use (1) to find the pdf of Z :
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Normal distribution II

fY (z) =
1

σ
X

√
2π

exp

[
−1

2

(
σ
X
z + µ

X
− µ

X

σ
X

)2
]
· |σX | (4)

=
1√
2π

exp

[
−1

2
z2
]

since

X = g−1(X ) = σ
X
Z + µ

X∣∣∣∣dg−1(x)dz

∣∣∣∣ = |σX |
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Normal distribution III

Since the pdf is a normal pdf with moments 0 and 1, we write:

Z ∼ N (0, 1) (5)

A linear combination of n independent normal variables
{Xi ; i = 1, 2, . . . , n}

Y = a+
n

∑
i=1

biXi

has a normal distribution:

Y ∼ N

(
a+

n

∑
i=1

biµXi
,

n

∑
i=1

b2i σ2
Xi

)
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Normal distribution IV

It follows that the average of n identically distributed independent
normal variables (IIN) is

X̄ =
1

n

n

∑
i=1

Xi ∼ N

(
µ

X
,

σ2
X

n

)
(6)

which can be standardized:

X̄ − µ
X√

σ2
X
n

∼ N (0, 1) , when {Xi ; i = 1, 2, . . . , n} IIN (7)

(7) is central in the inference theory for regression models that we
will use.
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Chi-square distribution I

Definition (Chi square)

If Zi ∼ N (0, 1) , i = 1, . . . , n. U = ∑n
i=1 Z

2
i is Chi-square

distributed (χ2) with n degrees of freedom:

U ∼ χ2 (n)

I SW uses m at this point

I It follows from this definitions that: Z 2 ∼ χ2 (1) for
Z ∼ N (0, 1)

I The number of degrees of freedom (df) is the number of
variables minus the number of restrictions between the
variables
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Chi-square distribution II
I For Zi ∼ N (0, 1) , i = 1, . . . n in the definition, there are no

restrictions, so df = n.

I If we instead consider Xi ∼ N
(
0, σ2

X

)
i = 1, 2, . . . , n and the

squares of (Xi−X̄ )
σX

there will be one restriction between the n

variables, since ∑n
i=1(Xi − X̄ ) = 0. It can be shown (BN page

83) that:

∑n
i=1 (Xi − X̄ )

2

σ2
X

∼ χ2 (n− 1)

I It is not uncommon to use the notation for the sum of squares
for normal variables by:

S2 =
n

∑
i=1

(Xi − X̄ )
2

. (8)
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Chi-square distribution III

I With this notation we have:

S2

σ2
X

∼ χ2 (n− 1) . (9)

which will be used in the construction of t-distributed random
variables that we use to make inference.

I Expectation and variance:

E (
S2

σ2
X

) = (n− 1) Var(
S2

σ2
X

) = 2(n− 1)
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t-distribution I

Assume Y ∼ N (0, 1), U ∼ χ2 (v) , and that Y and U are
independent. Then

t =
Y√
U
v

∼ t (v) (10)

is t-distributed with v degrees of freedom. var(t) = v/(v − 1) for
v ≥ 3
If Xi ∼ N

(
µX , σ2

X

)
, i = 1, 2, ..., n and independent: Then

Y =
X̄ − µX

σX√
n

∼ N (0, 1)

S2

σ2
X

∼ χ2 (n− 1)
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t-distribution II

as above and

X̄−µX
σX√
n√
S2

σ2
X

√
n− 1 =

X̄ − µX√
S2

n

√
n− 1 ∼ t (n− 1) . (11)

which is the basis for testing the hypothesis about the mean of
normally distributed variables.
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F-distribution I

I The last distribution we will need in this course is the
F -distribution.

I If U ∼ χ2 (v1) and V ∼ χ2 (v2) are independent:

F =
U
v1
V
v2

=
U

V

v2
v1

∼ F (v1, v2) (12)
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F-distribution II
I If Xi ∼ N

(
µX , σ2

X

)
i = 1, 2, ..., n are independent, we have

found that

Y =
X̄ − µX

σX√
n

∼ N (0, 1) ,

Y 2 ∼ χ2 (1) , and

S2

σ2
X

∼ χ2 (n− 1) .

combined with (12), we can conclude that

F =

(X̄−µX )
2

σ2x
n

S2

σ2
X

(n− 1) ∼ F (1, n− 1) .
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F-distribution III

If you compare with the definition of t(−1) in (11) you will see
that:

t(n− 1)2 = F (1, n− 1) (13)

Generally, the square of a t-distributed variable with v degrees of
freedom is F -distributed with 1 and v degrees of freedom.

t(v)2 = F (1, v). (14)

The F distribution is indispensable when we work with multiple
regression models.

38 / 58



Introduction Random variables Special distributions Multivariate distributions Moments of a function of a variable

­5.0 ­2.5 0.0 2.5 5.0

0.1

0.2

0.3
N ( 0 ,1 )

f X ( x )

x

x
0 1 2 3 4 5 6

0.1

0.2
χ 2 ( 3 )

f X ( x )

x

­5.0 ­2.5 0.0 2.5 5.0

0.1

0.2

0.3
t ( 3 )

f X ( x )

x 0 1 2 3 4 5 6

0.25

0.50

F ( 3 ,2 )

f X ( x )

Four density functions: a) standard normal, b) χ2 pdf
with 3 degress of freedom, c) t- pdf with 3 df, d) F -pdf

with 3 and 2 df.
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Joint probability distribution
I In the probability approach to econometrics, the joint

probability function is the main tool for modelling interactions
between variables

I Read Ch2.3 in SW to discrete joint distributions. One of the
exercises to Seminar 1 invites you to review discrete joint
probability functions

I For two continuous random variables Y and X , the joint pdf is

fY ,X (y , x) =
∂2

∂y∂x
P(Y ≤ Y and X ≤ x).

fY ,X (Y ,X ) has the properties:

1. fY ,X (Y ,X ) ≥ 0, ∀Y ,X
2.
∫ ∞
−∞

∫ ∞
−∞ fY ,X (Y ,X ) dydx = 1

If and only if Y and X are independent:

fY ,X (y , x) = fY (y)fX (x) (independence) 40 / 58
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Marginal and conditional pdf
The pdf for X can always be retrieved from the joint pdf:

fX (x) =
∫ ∞

−∞
fY ,X (y , x) dy ≡ fX (x) =

d

dx
P (X ≤ x) .

In this interpretation, fX (x) is called the marginal pdf.
Likewise, for Y we obtain the marginal pdf as:

fY (y) =
∫ ∞

−∞
fY ,X (y , x) dx

The conditional probability density function for X given Y = y is

fX |Y (x | y) = fY ,X (y , x)

fY (y)

fX |Y (x | y) is a valid pdf, meaning that the conditional probability
function is

FX |Y (x | y) =
∫ x

−∞
fX |Y (x | y) dx .
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Conditioning

Definition of conditional expectation I

I To save some time and space we concentrate on the
continuous random variable case.

I There is seminar exercise about the discrete variable case.

I Using the concepts that we have reviewed: The conditional
probability density function (pdf) for Y given X = x is

fY |X (y | x) = fXY (x , y)

fX (x)
(15)

where fXY (x , y) is the joint pdf for the two random variables
X and Y , and fX (x) is the marginal pdf for X .
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Conditioning

Definition of conditional expectation II

Definition (Conditional expectation)

Let Y be the random variable with conditional pdf fY |X (y | x) .
The conditional expectation of Y is

E (Y | X = x) =
∫ ∞

−∞
yfY |X (y | x) dy = µY |x .
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Conditioning

Conditional expectation function I

I For a given value of X = x the conditional expectation
E (Y | X = x) is deterministic, it is a number.

I We can however consider the expectation of Y for the whole
value set of X . In this interpretation, E (Y | X ) is a random
variable with E (Y | x) as a value for X = x .

I This line of reasoning motivates that the conditional
expectation function E (Y | X ) is a function of the random
variable X :

E (Y | X ) = gX (X )
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Conditioning

Conditional expectation function II

I If the conditional expectation function is linear, we can write
it as

E (Y | X ) = µY |X = β0 + β1X (16)

which we shall see later is the essential part of a the linear
regression model with Y as the regressand and X as the
regressor.

I We next discuss three important aspects of conditioning:

I Conditional variance
I The law of iterated expectations
I Linear independence of X and Y when E (Y | X ) = constant
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Conditioning

Conditional variance I

I Since the conditional probability function is a valid probability
function, we can also define higher order moments for the
condtional pdf.

I Specifically, the conditional variance: var(Y | X = x)

I In a regression model, the variance of the disturbance term,
the non-explained part, is interpretable as var(Y | X = x)

I For a relevant regression model we should expect that

var(Y | X = x) < var(Y )

Why?
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Conditioning

Independence I

I Two events A and B are independent if
Pr(A∩ B) = Pr(A)Pr(B).

I By analogy, two continuous random variables Y and X are
independent if

fY ,X (y , x) = fY (y)fX (x)

I If Y and X are independent, the conditional expectation of Y
is constant and equal to the marginal expectation

E (Y | X = x) =
∫ ∞

−∞
yfY |X (y | x) dy =

=
∫ ∞

−∞
y
fXY (x , y)

fX (x)
dy =

∫ ∞

−∞
yfY (y) = µY .
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The general law of iterated expectations

The law of iterated expectations I

I Let Y and X be two random variables and let E (Y | X ) be a
conditional expectation function (not necessarily linear)

I the Law of iterated (or double) expectations says that:

E [E (Y | X )] = E (Y ) . (17)

as in equation (2.19) in SW.

I The law says that if we take the expectation over all the
values that we first condition on, we obtain the unconditional
expectation.

I Interpretation (i): If we use the probabilities of all the values
that X can take, it does not matter what the value of X is
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The general law of iterated expectations

The law of iterated expectations II

I Interpretation (ii): E (Y ) is the probability weighted average
of all the conditional means of Y given x .

I For discrete variables, the proof is by direct inspection, as on
page 71 in SW.

I For continuous variables: Proof is by conditional pdf as in, for
example BN exercise 4.12
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The general law of iterated expectations

Note the extension of (17) to “multivariate conditioning” (17) on
page 72 in SW:

E [E (Y | X ,Z )] = E (Y )
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Covariance and correlation

Covariance I

I The covariance between Y and X is defined as

cov (Y ,X ) = E [(Y − µY ) (X − µX )] ≡ σY ,X ≡ σX ,Y

I cov (Y ,X ) = 0 ,if Y and X are independent. Proof is by way
of using f (Y ,X ) = f (Y )f (X ) (as in exercise 4.6 in BN)

I But cov (Y ,X ) = 0 does not logically imply independence!!!!

I Often we will use one of the shorter forms:

cov (Y ,X ) = E [(Y − µY )X ] = E [Y (X − µX )]

Show!
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Covariance and correlation

Covariance II

I A third way of re-writing cov (Y ,X ) is

cov (Y ,X ) = E [(Y − µY ) (X − µX )]

= E [YX − Y µX − µYY + µY µX ]

= E (YX )− µY µX .

I We will need the variance of a sum of random variables

var(Y + X ) =?
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Covariance and correlation

Covariance III

var(Y + X ) = E [Y + X − E (Y + X )]2

= E [(Y − E (Y )) + (X − E (X ))]2

= var(Y ) + var(X ) + 2cov(Y ,X )

which generalizes to

var(Y + X + Z ) = var(Y ) + var(X ) + var(Z )

+2cov(Y ,X ) + 2cov(Y ,Z ) + 2cov(X ,Z )

and so on for longer sums
See Key concept 2.3 in SW
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Covariance and correlation

Correlation coefficient

ρXY = corr(X ,Y ) =
cov(X ,Y )√

var(X )
√

var(Y )
=

σXY√
σ2
X

√
σ2
Y

=
σXY√

σ2
X

√
σ2
Y

=
σXY

σX σY

I Using the different notations for standard deviations that we
use.

I The bivariate normal distribution is completely described by
the two expectations, the two variances and the correlation
coefficient (alternatively the covariance)

I We say the bivariate normal distribution has five parameters.
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Covariance and correlation

I Above we saw that independence implies

E (Y | X = x) = µY (a constant)

I On page 74 in SW it is shown that E (Y | X = x) = µY

=⇒ cov(X ,Y ) = 0

I However, cov(X ,Y ) = 0 does not imply E (Y | X = x) = a
constant.

I See e.g. Exercise 2.23 in SW

I As we shall see, the implication follows if E (Y | X = x) is a
linear function (“the relationship between X and Y is linear”).

I The case where f (Y ,X ) is bivariate normal is an important
case of this (we will study this when we get to regression)
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Functions of random variables (again)

I As already noted, we often work with functions of random
variables

I The main functions are

I Sums and linear functions
I Products
I Ratios

I Above we gave the main tool, (1), for finding the distribution
of Y = g(X ).

I But often it serves our purpose if we can find the 1st and 2nd
moments of the new variable Y
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Linear functions

I We have given the rules for E and Var of sums of random
variables

I The rules for a linear function is a direct
generalization/application:

Y = a+ bX + cZ

E (Y ) = µY = a+ bµX + cµZ

var (Y ) = σ2
Y = b2σ2

X + c2σ2
Z + 2bcσX ,Z

I See Key concept 2.3 in SW BN Kap 4.4 also gives more
complete results for a system of linear equations.
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Non-linear functions (the delta method)
I Consider

g(X ,Y ) =
X

Y

I Since E and var are linear operators, we must first find a linear
approximation to g(X ,Y ).

I This is done by Taylor expansion (Sydsæter 2003, Kap 7).
I Many textboks, but not SW(?), now include it under the name

delta method,
I In BN page 72-73 it is show that the following hold

E

(
X

Y

)
≈ µX

µY
, (18)

var

(
X

Y

)
≈
(

1

µY

)2
[

σ2
X +

(
µX

µY

)2

σ2
Y − 2

(
µX

µY

)
σX ,Y

]
(19)

under mild assumptions.
I Since many variables that interest us are ratios of observable

variables (the “natural rate of unemployment” is one example
that we shall look at), these equations are very relevant for
applied work.

I We therefore keep this a (precious!) reference.
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