
Introduction Distribution of averages Asymptotic (n-large) theory Review of statistical inference

ECON 3150/4150, Spring term 2014. Lecture 2

Ragnar Nymoen

University of Oslo

16 January 2014

1 / 26



Introduction Distribution of averages Asymptotic (n-large) theory Review of statistical inference

References to Lecture 2 (this slide set)

I Stock and Watson (SW)

I Ch 2.5 and 3-3.6; 3.7 is saved for Lecture 3, as a bridge and
motivation for Ch 4: Linear regression with One Regressor

I Bårdsen and Nymoen (BN)

I Kap 4.5-4.9
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Sum and averages of variable I

I We continue of tour into the statistical theory part of the
combined discipline called econometric modelling.

I Lecture 1 noted several important results. For example,

I A linear combination of n independent normal variables
{Xi ; i = 1, 2, . . . , n}

Y = a +
n

∑
i=1

biXi (1)

has the normal distribution:

Y ∼ N

(
a +

n

∑
i=1

biµXi
,

n

∑
i=1

b2
i σ2

Xi

)
(2)
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Sum and averages of variable II

I It follows that the average of n identically distributed
independent (i..i.d) normal variables, Xi ∼ IIN(µ

X
, σX ), is

distributed:

X̄ =
1

n

n

∑
i=1

Xi ∼ N

(
µ

X
,

σ2
X

n

)
(3)

which can be standardized:

X̄ − µ
X√

σ2
X
n

∼ N (0, 1) . (4)

I See Key concept 2.5 in SW about i.i.d Random Variables
and the assumptions of Simple Random Sampling.
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Sum and averages of variable III

I The results in (3) and (4) simply add the assumption that the
distribution of each of the n i.i.d. variables is standard normal
N(0, 1).

I Note, that results (2.46)-(2.48) on page 88 in SW follow
directly from (3) with suitable choice of symbols.

I However, it is not always that we can realistically make the
normality assumption.

I We therefore need results that tell us when the normal
distribution is a valid approximation
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Convergence of distribution of averages

The Central Limit Theorem,CLT I

Theorem (Central Limit Theorem)

Let Xi i = 1, 2, , ..., n be independent and identically distributed
random variables with E (Xi ) = µX and 0 < σ2

X < ∞. The
distribution function of the sequence of standardized averages

Zn = X̄n−µX

σX /
√
n

converges to the cumulative distribution function of

the standard normal distribution, so that {Zn} will converge to the

standard distributed random variable: Zn
d−→ Z ∼ N (0, 1) .

I This is the same as in Key Concept 2.7 in SW.

I It is an important theorem about “convergence in
distribution”.
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Convergence of distribution of averages

The Central Limit Theorem,CLT II

I Note that nothing is said about the common distribution of
the Xi variables (it can be any distribution), compare Figure
2.10 for an illustration.

I Therefore, CLT is all important for being able to perform
statistical testing in cases where we, as researchers, cannot
control (or design) an exact distribution for each Xi .
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Convergence of distribution of averages

A special case (de Moivre’s theorem)

Theorem (de Moivres theorem)

’If X has a binominal (Bernoulli) distribution with E (X ) = np and

var(X ) = np(1− p), the standardized variable Z = X−E (X )√
var (X )

converges to Z ∼ N (0, 1) when n→ ∞.

I The approximation is good when np(1− p) > 10
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Convergence of distribution of averages

A generalization of CLT to functions I

I Due to a theorem called the continuous function theorem, it is
possible to extend CLT to random variables that are functions
of variables for which CLT holds.

I For example, if CLT holds, then

Z 2
n =

 X̄n − µ
X√

σ2
X
n

2

d−→ χ2(1)

which is the basis for the large sample (asymptotic)
counterparts to the results about the χ2, t and F distributed
random variables in slide 23-35 in Lecture 1.

9 / 26



Introduction Distribution of averages Asymptotic (n-large) theory Review of statistical inference

Convergence in probability

Probability limit I

Definition (Convergence in probability)

Let {Zn} be an infinite sequence of random variables. If for all
ε > 0

lim
n→∞

P (|Zn − Z | > ε) = 0

Zn converge in probability to the random variable Z . Convergence
in probability is written

Zn
p−→ Z .

The random variable Z is called the probability limit of Zn. A
much used notation is:

plim (Zn) = Z .
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Convergence in probability

Law of large numbers

Theorem (Law of Large Numbers)

Let Xi be independent and identically distributed variables with
E (Xi ) = µX and 0 < σ2

X < ∞. X̄n = 1
n ∑n

i=1 Xi converges in
probability to µX

plim (X̄n) = µX .

I The proof is with reference to the famous
Chebychev’s-inequality. SW page 715-716: BN page 92.

I Law of large Numbers is found in Key Concept 2.6 in SW
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Convergence in probability

Consistency of estimators
I We are often interest in situations where Zn converge to a

number cZ , so that
Zn

p−→ cZ .

as in the case of the Law of Large Numbers.
I If an estimator converges in probability to the true parameter

value, it is a consistent estimator.
I Assume that θ̂n is an estimator of θ from a sample of n

observations. Let n grow towards infinity. The sequence of
estimators θ̂n is a converging sequence if

plim θ̂n = θ (5)

and (5) then defines θ̂n as a consistent estimator of θ.
I A sufficient condition for consistency is that the estimator is

unbiased for every value of n, E (θ̂n) = θ, and that
var(θ̂n)→ 0 as n→ ∞.
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Convergence in probability

Rules for the probability limit (Slutsky’s theorem)
Let the infinite sequences Zn and Wn converge in probability to the
constants cZ and cW . The following rules then hold

plim (Zn + Wn) = plim Zn + plim Wn = cZ + cW

plim (ZnWn) = plim Zn × plim Wn = cZcW

plim

(
Zn

Wn

)
=

plim Zn

plim Wn
=

cZ
cW

.

I In econometrics these rules are much used, because empirical
moments, averages and empirical (co)variances can be shown to
converge in probability to their theoretical counterparts,
expectation and covariance.

I In this way consistency, or inconsistency, can often be shown for a
given estimator, and for a given model specification
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Parameter, estimator and estimate

I A population parameter is a numerical aspect of a statistical
distribution. Expectation and variance are examples

I The goal of statistical inference is to obtain valid conclusions
about the population parameters with the use of the data in a
given sample.

I Let θ denote the unknown parameter (it is a number!) we are
interested in. Statistical methodology lets us formulate a
function θ̂ of the observed random variables. θ̂ is called an
estimator.

I The estimator θ̂ is itself a stochastic variable that has a
distribution that follow from the assumptions first made about
the distribution function of the variables

I A realization of the random variable θ̂ is called an estimate.

14 / 26



Introduction Distribution of averages Asymptotic (n-large) theory Review of statistical inference

Parameter, estimator and estimate

I It is common to let denote θ̂ both the estimator (a random
variable) and the estimate (a number).

I Statistical inference has many aspects:

I Parameter estimation—we want an estimator of θ̂ of θ to have
“good properties”!

I Hypothesis testing
I Confidence interval construction

I Here: Review the theory for testing a hypothesis about the
population mean in an i.i.d experiment

15 / 26



Introduction Distribution of averages Asymptotic (n-large) theory Review of statistical inference

Inference on the expectation of a i.i.d. variable

Model formulation I

I Assume that we have n independent and identically normally
distributed ε i variables

ε i ∼ IID
(
0, σ2

ε

)
i = 1, 2, . . . , n (6)

and that the variable Yi is defined by the function:

Yi = µY + ε i (7)

where µY is a parameter of the i.i.d. sequence
{Yi ; i = 1, 2, ..., n}

I (6) and (7) define a statistical model

I The rules for making logically valid inference about µY is
based on the model.

16 / 26



Introduction Distribution of averages Asymptotic (n-large) theory Review of statistical inference

Inference on the expectation of a i.i.d. variable

Model formulation II

I If the assumptions of the model are wrong (in this case the
i.i.d. assumption) the inference may no be reliable (cf. “black
swan”)

I Both valid and reliable statistical inference is model-based.
Conclusions follow from assumptions, here as elsewhere.

I There is nothing wrong about making bold assumptions in
order to establish a model. But in econometrics, a critical
attitude to the assumptions of the statistical model is
essential.
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Inference on the expectation of a i.i.d. variable

Finding a good estimator I

I Consider Ȳ as an estimator of µY :

µ̂Y = Ȳ (8)

I µ̂Y is clearly a random variable, because Ȳ is a random
variable (because Yi is, because...)

I What is the expectation and variance of µ̂Y ?
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Inference on the expectation of a i.i.d. variable

Finding a good estimator II
I We have already the answer in (3), since by applying rules of

E and var on

Ȳ =
1

n

n

∑
i=1

(µY + ε i ) = µY + ε̄ (9)

we get

E (µ̂Y ) = µY (10)

Var(µ̂Y ) =
σ2

ε

n
(11)

I (10) says that µ̂Y is a good guess on µY on average. µ̂Y is an
unbiased estimator (“forventningsrett”)

I (11) shows that Var(µ̂Y )→ 0 when n.
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Inference on the expectation of a i.i.d. variable

Finding a good estimator III

I µ̂Y is thefore a consistent estimator:

plim µ̂Y = µY

I Also BLUE (but we come back to that)
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Inference on the expectation of a i.i.d. variable

Large sample test I

I The test situation with one-sided alternative:

H0: µY = µ0
Y against H1: µY > µ0

Y .

I Intuitively, we reject H0 when Ȳ is larger than we can expect
if H0 is true.

I But how “large is large”? We need a decision rule that allows
for “randomly high” Ȳ s even when H0 holds.
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Inference on the expectation of a i.i.d. variable

Large sample test II

I From CLT we have:

µ̂Y − µ0
Y√

Var(µ̂Y )

d−→ N(0, 1) (12)

under H0, meaning that we can obtain the critical values (see
Key Concept 3.5) that we need to perform an asymptotic test
from the N(0, 1) distribution.

I The standardized random variable
µ̂Y−µ0

Y√
Var (µ̂Y )

is usually called

the t-ratio (or the t-statistic), when it it N(0, 1) distributed.
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Inference on the expectation of a i.i.d. variable

Large sample test III

I When σ2
ε is unknown, we estimate it by:

σ̂2
ε =

S2

n− 1

where S2 is the sum of squares for the Yi s (as in Lecture 1
slide 28, with an obvious change in notation).

I σ̂2
ε is an consistent estimator of σ2

ε , because

E (σ̂2
ε ) = E

(
S2

n− 1

)
= E

(
σ2

ε

σ2
ε

S2

n− 1

)
=

σ2
ε

n− 1
E

(
S2

σ2
ε

)
= σ2

ε

var(σ̂2
ε ) =

σ4
ε

(n− 1)
var

(
S2

σ2
ε

)
=

σ4
ε

(n− 1)2
2(n− 1) =

2σ4
ε

(n− 1)
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Inference on the expectation of a i.i.d. variable

Large sample test IV

I It follows that the critical values obtained from the N(0, 1)
are reliable to use, also when the variance of Yi is unknown
and has to be estimated.
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Inference on the expectation of a i.i.d. variable

Finite sample test I

I If we can replace the ε i ∼ IID
(
0, σ2

ε

)
with the stronger

assumption ε i ∼ IIN
(
0, σ2

ε

)
, we can obtain an exact test for

any given sample size n.(See Section 3.6 in SW)

I We use the same estimator of
√

Var(µ̂Y ) as above:

̂√
Var(β̂0) =

√
σ̂2

ε

n

but the t-ratio is now distributed under H0 :

µ̂Y − µ0
Y

̂√
Var(µ̂Y )

∼ t(n− 1) (13)
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Inference on the expectation of a i.i.d. variable

Finite sample test II

I The proof is by showing that by re-arrangement, the random
variable can be written as:

µ̂Y−µ0
Y

σε√
n√
S2

σ2ε√
n−1

∼ t(n− 1)

to conform with (10) in Lecture 1, and noting that the
numerator is N(0, 1) and the denominator is χ2(n− 1).
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Inference on the expectation of a i.i.d. variable

Finite sample test III
I To perform the test, we use the test statistic

t =
µ̂Y − µ0

Y

̂√
Var(µ̂Y )

(14)

which is observable under H0. The estimated µ̂Y and
̂√
Var(µ̂Y ) from the sample are used to calculate the value

(“score”) of the t-statistic (14), for example 2.5. The H0 is
rejected if t = 2.5 is higher than the critical value
corresponding to the chosen significance level
(controllingType-I error)

I Alternatively: Reject when the p-value is lower than a chosen
significance level.
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Inference on the expectation of a i.i.d. variable

Take care to review I

1. Calculation of critical values, and p-value when H1 is two-sided

2. The calculation and estimation of a confidence interval for µY

and for the difference of two population means.

3. In class, we review the interesting Section 3.5 in SW about
the estimation and testing of causal effect using difference of
means.
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