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References to Lecture 4

I SW

I Ch. 4 (plus CH. 17, references are given in the slide set)

I Bårdsen and Nymoen (BN)

I Kap 5.1-5.8
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Looking back—and ahead I
I In Lecture 2 we reviewed the statistical model

Yi = µY + ε i , i = 1, 2, . . . , n

where ε i ∼ i .i .d(0, σ2) ∀i or ε i ∼ IIN(0, σ2) ∀i .
I Reminded ourselves that µ̂Y = Ȳ is a good estimator of µY

that can be used to test hypotheses like

H0: µY = µ0
Y against H1: µY > µ0

Y .

or
H0: µY = µ0

Y against H1: µY = µ0
Y .

for example.
I We now want to extend the statistical model to include an

economic explanatory variable X to obtain an econometric
model.
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Modelling concepts and terminology I

I We formulate our first econometric model as a linear (in
parameters) relationship between the regressand, Y , and the
regressor X .

I The relationship, often called the population regression line,
holds “on average” for n variables {Yi , Xi} i = 1, 2, . . . , n:

Yi = β0 + β1Xi + ε i , i = 1, 2, ..., n (1)

I β0 and β1are parameters (non random numbers) to be
estimated using a sample of n observations of {Yi , Xi}.

I ε i is the disturbance term (ui in SW)

I Yi and ε i are always random variables.

I Xi can be either random or deterministic.
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Modelling concepts and terminology II
I The model formulation in SW (Key Concept 4.3) appears to

rule out the case of deterministic regressor. This is hardly the
intention, since it would crash with the efficient way of
estimating the Difference-of-Means model in Ch. 3.5.

I Cf. Lecture 3: Using an indicator variable (dummy) variable to
estimate the treatment effect in a natural experiment.

I In this lecture, we therefore make a distinction between the
regression model with deterministic X (call it RM1) and the
regression model with stochastic regressor (RM2).

I The parameter β0 is called the constant term, or the intercept
coefficient.

I The parameter β1 is referred to as the regression coefficient,
the slope coefficient or the derivative coefficient.
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Modelling concepts and terminology III

I The economic interpretation of the slope coefficient β1

depends on how Y and X are measured:

I If, Y is expenditure on a certain good in kroner, and X is total
consumption expenditure in kroner, then β1 is the derivative of
Y with respect to X

I If Y and X are variables that have been transformed to the
natural logarithms of the corresponding kroner expenditures,
then the interpretation of β1 changes to elasticity.

I If X is an indicator variable (dummy) or step-variable
(composite dummy) the interpretation is different, as we shall
see.
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Re-parameterisation of the regression equation I

I Before we specify the models, we note a useful way of
re-writing equation (1), namely

Yi = α + β1(Xi − X̄ ) + ε i , i = 1, 2, ..., n (2)

where

α ≡ β0 + β1X̄ , X̄ =
1

n ∑n

i=1
Xi

I The “trick” is the same as the one we used for in Lecture 3
for the equation for the straight line in the scatter plot of data
point.

I One important point in the present setting is that the random
disturbance ε i is unaffected.
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Re-parameterisation of the regression equation II

I It is only the parameters of the equation that are changed (in
fact, only the constant term in this case).

I We say that (2) is a re-parameterisation of (1) that leave the
stochastic properties of the model unchanged.
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RM1—econometric specification

Yi = β0 + β1Xi + ε i ≡ α + β1(Xi − X̄ ) + ε i , i = 1, 2, . . . , n

a. {Xi} i = 1, 2, . . . , n are fixed numbers,

∑2
i=1(Xi − X̄ )2 > 0

b. E (ε i ) = 0, ∀ i , (“for all i”)
c. var (ε i ) = σ2, ∀ i
d. cov (ε i , εj ) = 0, ∀ i 6= j
e. α, β0, β1 and σ2 are constant parameters

For the purpose of statistical inference we will often assume normally
distributed disturbances:

f.i ε i ∼ IIN
(
0, σ2

)
.

With reference to asymptotic theory (Lecture 1 and 2), the normality
assumption can be replaced by the weaker assumption:

f.ii {ε i} i = 1, 2, . . . , n. are i .i .d . distributed with finite (but
non-zero) fourth order moments—no excess kurtosis
in large samples.
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Comments to the econometric specification, RM1 I

I Since Xi is deterministic we can set

µYi
= β1 + β1Xi

and write assumption b.-d. as:

µYi
≡ E (Yi ) = β1 + β1Xi

var (Yi ) = σ2, ∀i

cov (Yi , Yj ) = 0, ∀i 6= j
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Comments to the econometric specification, RM1 II
I b., c. and d. are often referred to as the Classical

assumptions about the regression disturbance.

I var (ε i ) = σ2, ∀ i
This assumption is called Homoskedasticity, while

Var (ε i ) 6= σ2, ∀i

is called Heteroskedasticity.

I Cov (ε i , εj ) = 0, ∀ i 6= j
For cross-section data, Cov (ε i , εj ) 6= 0 may be called
“cross-section dependence”.
For time series data, the case of

Cov(εt , εt−s) 6= 0 for s = ±1,±2, ....

is called serial correlated errors or autocorrelated errors.
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OLS estimates and estimators

OLS estimates I

I In lecture 3 we derived the OLS estimates β̂0 (alternatively α̂)
and β̂1.

I These estimates are sample specific numbers.

I However, we can imagine that we get access to a second
sample, with another realization of the n stochastic variables
Yi .

I What would you do in terms of estimation?
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OLS estimates and estimators

OLS estimates II

I Apply the least-squares principle again!

I And again, for a third and fourth realization of the random
variables!
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OLS estimates and estimators

I Hence we can define a random variable β̂1 which is a function
of the random variables Yi , i = 1, 2, . . . , n

β̂1 =
∑n

i=1(Xi − X̄ )Yi

∑n
i=1(Xi − X̄ )2

=
n

∑
i=1

wiYi (3)

where

wi =
(Xi − X̄ )

∑n
i=1(Xi − X̄ )2

(4)

I One interpretation that sometimes is helpful is:

ε i
random

→
(2)

Yi →
n

∑
i=1

wiYi =
∑n

i=1(Xi − X̄ )Yi

∑n
i=1(Xi − X̄ )2

= β̂1
random
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OLS estimates and estimators

I α̂ and β̂0 are also reinterpreted as random variables:

α̂ = Ȳ , (5)

β̂0 = α̂− β̂1X (6)

I We see that α̂, β̂0 and β̂1 take a double-meaning, as
estimates and estimators (random variables).
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Properties of estimators, RM1

Expectation and bias I

I We are interested in E (β̂1) since we want to evaluate the bias
E (β̂1 − β1)

I β̂1 is a linear function of the Yi variables. The OLS estimator
is a linear estimator.

I Can therefore find E (β̂1) by use of the rules for expectation.

Re-write the estimator as:

β̂1 =
n

∑
i=1

wi (β0 + β1Xi + ε i ) = β1 +
n

∑
i=1

wi ε i
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Properties of estimators, RM1

Expectation and bias II
using

n

∑
i=1

wi =
1

∑n
i=1(Xi − X̄ )2

n

∑
i=1

(Xi − X̄ )i = 0

n

∑
i=1

wiXi =
1

∑n
i=1(Xi − X̄ )2

n

∑
i=1

(Xi − X̄ )iXi = 1

Take the expectation through;

E (β̂1 − β1) = E

(
n

∑
i=1

wi ε i

)
=

n

∑
i=1

wiE (ε i ) = 0

Hence
E (β̂1 − β1) = 0, unbiasedness of β̂1
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Properties of estimators, RM1

Variance I

var(β̂1) = var(β1 +
n

∑
i=1

wi ε i ) = σ2
n

∑
i=1

w 2
i =

σ2

∑n
i=1(Xi − X̄ )2

If we write the empirical variance of X as:

σ̂2
X =

1

n

n

∑
i=1

(Xi − X̄ )2

(instead of dividing by n− 1) we get the compact expression

var(β̂1) =
σ2

nσ̂2
X
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Properties of estimators, RM1

Variance II

1. Larger disturbances variance, σ2, increases var(β̂1) and
therefore estimation uncertainty

2. Large variability in the explanatory variable (σ̂2
X ) reduces

var(β̂1)

3. More observations (n) reduces var(β̂1)
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Properties of estimators, RM1

Intercept estimator properties I

I You can show that

E (α̂) = α (7)

E (β̂1) = β1 (8)

and

var(α̂) =
σ2

n

var(β̂0) = var(α̂) + X̄ 2var(β̂1)− 2X̄ cov(α̂, β̂1)

=
σ2

n
(1 + X̄ 2 1

σ̂2
x

) (9)
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Properties of estimators, RM1

Intercept estimator properties II

var(β̂0) makes use of

cov(α̂, β̂1) = 0 (10)

I Why is (10) true? See BN Appendix 5.A for a proof (English
translation on the web-page).

I As another DIY exercise: Derive an expression for cov(β̂0, β̂1).
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Properties of estimators, RM1

Summing up so far

I For RM1, and before invoking the assumption about normality
of ε i , we have that the OLS estimators for β0,α and β1 are:

I Unbiased (On average β̂1 − β1 is zero, for example)

I And have well defined variances and covariances that
depend on σ2, the sample size n, and how much variation
there is in X .

I Consistency of β̂1 and β̂0 (and α̂) follows from unbiasedness,
and var(β̂1)→ 0 when n→ ∞ (under mild assumptions:

∑∞
i=1(Xi − X̄ )2} > 0)

plim(β̂1) = β1, plim(β̂0) = β1, plim(α̂) = α (11)
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Properties of estimators, RM1

Gauss-Markov theorem I

As noted, the OLS estimator β̂2 is a linear estimator

β̂1 =
n

∑
i=1

wiYi , with wi =
(Xi − X̄ )

∑n
i=1(Xi − X̄ )2

which is unbiased.

I The Gauss-Markov theorem says that there is no other
estimator for the parameter β1 in RM1 that is linear and
unbiased and that has lower variance than β̂1 for a given
sample size n

I The same is true for β̂0 (and α̂). We say that for RM1, the
OLS estimators are best linear unbiased estimators (BLUE)

I There are proofs is in both books:
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Properties of estimators, RM1

Gauss-Markov theorem II
I SW, p. 110 for OLS estimation of constant and appendix 5.2

(not Ch 4!) for regression case. BN: kap 5.3.4

I so we only outline the argument here, and leave the details for
self study.

That other estimator for β1 takes the form

β̂
′
1 =

n

∑
i=1

ciYi , with fixed weights ci

We can define δi

δi = ci − wi , i = 1, 2, . . . , n

as a measure of the difference between the two set of weights.
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Properties of estimators, RM1

Gauss-Markov theorem III

We require
E (β̂

′
1) = β1

which implies the following for δi :

n

∑
i=1

δi = 0

n

∑
i=1

δiXi = 0

which allows us to write

var(β̂
′
1) = σ2

[
n

∑
i=1

w 2
i +

n

∑
i=1

δ2
i

]
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Properties of estimators, RM1

Gauss-Markov theorem IV

so that

var(β̂
′
1) > var(β̂1) unless δi = 0

and in that case

β̂
′
1 ≡ β̂1.
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Properties of estimators, RM1

Estimating the variance of the disturbance I

I The OLS principle itself—the normal equation (1ocs) from
Lecture 3—does not give an estimator for σ2.

I But it is natural to use the sum of squares of the OLS
residuals, i.e.,

n

∑
i=1

ε̂2
i

with ε̂ i interpreted as random variable.

ε̂ i = Yi − α̂− β̂1(Xi − X̄ )
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Properties of estimators, RM1

Estimating the variance of the disturbance II
I With reference to page 28 in the Lecture 1, if ε i ∼ IIN(0, σ2)

we have that
∑n

i=1 ε̂2
i

σ2
∼ χ2(n− 2) (12)

where the d.f is n− 2 instead of n− 1 because we now have
two restrictions between the n random variables:

n

∑
i=1

ε̂ i = 0 (13)

n

∑
i=1

ε̂ i (Xi − X ) = 0. (14)

when the model is Yi = β0 + εt there are n− 1 independent
variables.
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Properties of estimators, RM1

Estimating the variance of the disturbance III
I Because of the χ2(n− 2) distribution in (12) it follows that

σ̂2 =
σ2

n− 2

[
∑n

i=1 ε̂2
i

σ2

]
=

∑n
i=1 ε̂2

i

n− 2
(15)

is an unbiased and consistent estimator of σ̂2.

I Show!

I What is the expression for var(σ̂2)?

I If we relax the normality assumption and use ε i ∼ i .i .d(0, σ2)
instead, we still have consistency of σ̂2 given by (15).

I Notation: In SW:
SER ≡ σ̂2

see page 163.

29 / 37



Econometric specification of regression models Model with deterministic X Model with random regressor

Properties of estimators, RM1

Distribution function of OLS estimators I

I With the ε i ∼ IIN
(
0, σ2

)
assumption, β̂1 is itself a normally

distributes variable, for every sample size n.

β̂1 ∼ N(β1,
σ2

∑n
i=1(Xi − X̄ )2

)

I In the case of i .i .d . we can refer to the CLT to understand
that √

n(β̂1 − β1)
d−→ normal distribution,

since β̂1 − β1 is a weighted sum of i .i .d . random variables:

(β̂1 − β1) =
n

∑
i=1

wi ε i
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Examples of regression with deterministic X

Gender gap in US earnings

I See Table 3.1 in SW.

I Let Yi denote average hourly earnings (of working college
graduates) in USA.

I Let Xi be 1 if the average hourly earnings is for women, and 0
if it is for men.

I When we use OLS on the n = 10 observations, the result is:

Yi = 24.1460
(0.4627)

− 3.81400
(0.6543)

Xi + ε̂ i

where the numbers below the estimates are the estimated

standard errors
√

var(β̂0) and
√

var(β̂1).
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Examples of regression with deterministic X

GDP pr capita growth

1840 1860 1880 1900 1920 1940 1960 1980 2000 2020

1000 00

2000 00

3000 00

G DP pe r ca pita  in N orwa y (million fixed krone r)

1840 1860 1880 1900 1920 1940 1960 1980 2000 2020

10

11

12

13 Log GD P pe r ca pita  in N orw ay.

I Blue graph: GDP per
capita Y against time, t

I t is deterministic!

I Approx non-linear Y (t)
by Y = AegY t+εt

I εt is a random error

I Red graph shows ln Y
against time
ln Yt = ln A + gy t + εt
is an example of
regression with a
continuous deterministic
X
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Model specification with random X (RM2) I

Yi = β0 + β1Xi + ε i ≡ α + β1(Xi − X̄ ) i = 1, 2, . . . , n (16)

Assumptions:

a. {Xi , Yi} (i = 1, 2, . . . , n) are IID pairs, with
cov(Xi , Yi ) ≥ 0, var(Xi ) = σ2

X > 0 ,
var(Yi ) = σ2

Y > 0 ∀ i

b. E (ε i | Xh) = 0, ∀ i and h

c. var (ε i | Xh) = σ2, ∀ i and h and finite 4th
moments (no excess kurtosis)

d. cov (ε i , εj | Xh) = 0, ∀ i 6= j , and for all h

e. β0, β1 and σ2 are constant parameters
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Model specification with random X (RM2) II
For the purpose of statistical inference in small samples we may
invoke normally distributed disturbances:

f. ε i ∼ IIN
(
0, σ2 | Xh

)
.

I This specification is (more or less) the same as Key Concept
4.3 and 17.1 in SW

I Remark about the IID assumption:

I We have seen that if

E (Yi | Xi ) ≡ β0 + β1Xi

it is true that
E (εi | Xi ) = 0 ∀i

also for non i .i .d . random variables.
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Model specification with random X (RM2) III

I Hence, if we set h = i , assumption b. is really a consequence
of the linearity of E (Yi | Xh)

I Conversely, b., c, and d in the list of assumptions can be seen
as a consequence of linearity of E (Yi | Xh) and the i.i.d.
assumption.

I Note that in RM2 because of the conditioning we have the
reasonable implication that var (ε i | Xi ) = σ2 ≤ σ2

Y
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Properties of estimators, RM2
I RM2 is really RM1 re-expressed in terms of the conditional moments of

ε i
I Therefore, all the properties that we have shown for β̂1 also hold

for RM2.
I In particular we have, for RM2

E (β̂1 | X ) = β1 (17)

where | X means conditional on given values of X1, X2, . . . , Xn. The
proof is exactly the same calculation as for RM1 since all the X’s are
fixed numbers.

I Next, use the Law of iterated expectations

E (β̂1) = E (E (β̂1 | X )) = β1 (18)

to show that the OLS estimator of β̂1 is also unconditionally unbiased.
I The same is true for the OLS estimators of the intercept (α̂ and β̂0)
I The variance expression is also the same

var(β̂1) = var(β̂1 | X ) =
σ2

(n− 1)σ̂2
X

and the large sample distribution of β̂1 becomes

√
n(β̂1 − β1)

d−→ N(0,
σ2

σ2
X

) (19)

I References for self-study:

I SW, p 170-170 and Appendix 4.3 and 4.4 omits some details that are
filled in if you solve exercise 17.3

I BN, a complete proof of (19) is in kap. 5.8.3

I The consistency property in (11) also holds for the random regressor
model RM2.

I Kap 5.8.2 has a complete proof for plim(β̂1) = β1.
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Summary—and looking ahead
I We have formulated two classical regression models (the random X

version is known as the i.i.d. model for reasons that should by now be
clear)

I We have seen that the properties of the OLS estimators are the same in
the two models (including the BLUE property)

I The difference between RM1 and RM2 therefore lies in the
interpretation:

I In RM1 the parameter β1 shows how the unconditional expectation of
Y varies, as a function of the deterministic variable t.

I That variation can be continuous, in which case β1 is the derivative
coefficient, or a step-function

I In RM2, β1 is the slope coefficient in the conditional expectations
function of Y given X .

I In the following we will have random X as of reference case.
I Can we have both deterministic and random regressors in one and the

same regression model?
I Yes! A model like

Yi = β1 + β1X1i + β2X2i + ε i

where X1i is random and X2i is deterministic will be the typical case in
applied work, and if the classical assumption of ε i conditional on X1i

holds, the OLS estimators are BLUE in this model as well.
I Technically, this is an example of multivariate regression that we will

return to later.
I Next: How can we use the regression model for statistical inference?
I And: How are the properties of the OLS estimators affected if one or

more of the classical assumptions do not hold?
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