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Regression when X is binary Heteroskedasticity and WLS

References to Lecture 6

I SW

I Ch. 5.3-5.4

I Bårdsen and Nymoen (BN)

I Kap 7.8 (dummy varaible), 8.2.2 (heterosked)
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Dummy variable as regressor (revisited) I

I When we want to test the equality of two expectations,
µY0 and µY1 , and the sample of centred and standardized
variables (Yij − µYj

)/σY is i.i.d., for (i = 1, 2, . . . , nj ) and
j = 0, 1 , the test can be done with use of the regression
model:

Yi = β0 + β1Xi + ε i (1)

where ε i ∼ i .i .d(0, σ2), σ2 ≡ σ2
Y and Xi is a binary variable,

also called indicator variable, or a dummy

Xi =

{
0 for i = 1, 2, . . . , n0

1 for i = n0 + 1, . . . , n
(2)

so that n1 = n− n0.
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Dummy variable as regressor (revisited) II

I Often the symbol Di is used instead of Xi is such cases, and
Xi = 0 is called the reference value of the variable.

I The same formulation can be used whenever the regressor is
an indicator variable, see Ch. 5.3 in SW (in BN the discussion
of binary variables is found in Kap 7.8, on multiple regression).

I Under the classical RM assumptions:

E (ε i ) = 0 ∀i , var(ε i ) = σ2 ∀i , cov(ε i , εj ) = 0 ∀i , j

the OLS estimators of β0 and β1 will be BLUE as before (as
when Xi is a continuous variable)
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Dummy variable as regressor (revisited) III

I As we have noted: The OLS estimators are given by

β̂0 = Ȳ0 (3)

β̂1 = Ȳ1 − Ȳ0 (4)

where Ȳ0 refers to the Xi = 0 part of the sample, and Ȳ1 is
for the the Xi = 0 part.

I Therefore, β̂1 gives the estimated change in the intercept (not
the slope!) and β̂1 is some times called the
difference-estimator
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Algebra the dummy regressor case I

Since X takes n0 zeros and n1 ones:

X̄ =
1

n0 + n1
· n1 =

n1

n0 + n1

X̄ 2 =

(
n1

n0 + n1

)2

n

∑
i=1

X 2
i = n1

Ȳ X̄ = Ȳ
n1

n0 + n1
=

(
1

n0 + n1

n0+n1

∑
i=1

Yi

)
n1

n0 + n1

n

∑
i=1

XiYi =
n1

∑
i=1

Yi
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Algebra the dummy regressor case II

If we start from the expression

β̂1 =
∑n

i=1(Xi − X̄ )Yi

∑n
i=1(Xi − X̄ )2

=
1
n ∑n

i=1 XiYi − Ȳ X̄
1
n ∑n

i=1 X 2
i − X̄ 2

we have already:

β̂1 =
1

n0+n1
∑n1

i=1 Yi − Ȳ n1
n0+n1

1
n0+n1

n1 −
(

n1
n0+n1

)2 (5)
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Algebra the dummy regressor case III

The numerator of β̂1:

1

n0 + n1

n1

∑
i=1

Yi −
(

1

n0 + n1

n0+n1

∑
i=1

Yi

)
n1

n0 + n1

=
1

n0 + n1

{
n1

∑
i=1

Yi −
n1

n0 + n1

(
n0

∑
i=1

Yi +
n1

∑
i=1

Yi

)}

=
1

n0 + n1

{
n0

n0 + n1

n1

∑
i=1

Yi −
n1

n0 + n1

n0

∑
i=1

Yi

}

=
1

n0 + n1

{
n0

n0 + n1
n1Ȳ1 −

n1

n0 + n1
n0Ȳ0

}
=

n0n1

(n0 + n1)
2
(Ȳ1 − Ȳ0)

8 / 21



Regression when X is binary Heteroskedasticity and WLS

Algebra the dummy regressor case IV

The denominator of β̂1:

1

n0 + n1
n1 −

(
n1

n0 + n1

)2

=
n1

n0 + n1

(
1− n1

n0 + n1

)
=

n1n0

(n0 + n1)
2

Collect:

β̂1 =

n0n1
(n0+n1)

2 (Ȳ1 − Ȳ0)

n0n1
(n0+n1)

2

= Ȳ1 − Ȳ0
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Algebra the dummy regressor case V

For β̂0 we get:

β̂0 = Ȳ − X̄ (Ȳ1 − Ȳ0) = Ȳ − n1

n0 + n1
(Ȳ1 − Ȳ0)

=
n0

n0 + n1
Ȳ0 +

n1

n0 + n1
Ȳ1 −

n1

n0 + n1
(Ȳ1 − Ȳ0)

= Ȳ0
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Heteroskedasticity

I If the variances of the disturbances are not all identical, the
homoskedasticity assumption

var(ε i | Xi ) = σ2

of the regression model is violated, and we have
heteroskedasticity.
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Consequences of heteroskedasticity I

I The OLS estimators β̂0 and β̂1 are unbiased and consistent
also in the case of heteroskedastic disturbances, since

var(ε i | Xi ) = σ2 ∀i

does not enter into the proofs of these properties.

I The OLS estimators are however no longer BLUE since the
formulae

var(β̂1) =
σ2

nσ̂2
X

will either over- or underestimate the true variance of β̂1,
when Var(ε i | Xi ) = σ2

i .
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Consequences of heteroskedasticity II

I Unless we either

I re-specify the model, so that the disturbances of the
re-specified model become homoskeadstic, or

I fix the estimation of Var(β̂1) to become heteroskedastic robust

the t-ratio based on σ̂2 = 1
n−2 ∑n

i=1 ε̂2i will be biased and the
statistical inference is no longer reliable under
heteroskedasticity.

I Look at the fix for the standard errors first, then examples of
re-specification.
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Heteroskedasticity: robust variance estimation I

I Under homoskedasticity we use:

v̂ar(β̂1) =
σ̂2

nσ̂2
X

(6)

σ̂2 =
1

n− 2 ∑n

i=1
ε̂2i (7)

I SW refer to (6) as the homoskedasticity only expression for
the estimation of var(β̂1). See their equation (5.22).
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Heteroskedasticity: robust variance estimation II

I SW have then already introduced the heteroskedasticity
robust estimator

ṽar(β̂1) =
1

n−2 ∑n
i=1(Xi − X̄ )2 ε̂2i

nσ̂2
X

in equation (5.4) in their book.
√

ṽar(β̂1) is often referred to

as White-robust standard errors (Hal White, San Diego based
econometrician)

I Intuitively, using ṽar(β̂1) instead of v̂ar(β̂1) makes inference
become reliable again if “heteroskedasticity depends on X ”.
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Forms of heteroskedasticity I

I A form that is sometimes referred to as “classical
heteroskedasticity” is

σ2
i = σ2W h

i with h > 0 (8)

where Wi is an observable variable.

I A situation which is not uncommon, is that the scatter plot
suggests:

Var(Y | X ) = σ2X 2

I If heteroskedasticity is of this type, the problem created by
heteroskedasticity for inference is easily corrected by so called
weighted least squares (WLS), and also the heteroskedastic
robust ṽar(β̂1) will then work well.
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Forms of heteroskedasticity II

I For later reference: another Het. form which is relevant for
models of time series data, is autoregressive conditional
heteroskedasticity, ARCH. The first order ARCH is:

σ2
t = a0 + a1σ2

t−1 (9)
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Weighted least squares (WLS) I

I If we express the case of Var(Y | X ) = σ2X 2 in model form,
we have

Yi = β0 + β1Xi + ε i

with
var(ε i ) = σ2X 2

i

and all the other classical properties holding.
I Consider now the following model:

Yi

Xi
=

β0

Xi
+ β1 + ε∗i

and with suitable change in notation

Y ∗i = β∗0 + β∗1X ∗i + ε∗i (10)

where Y ∗i = Yi/Xi and X ∗i = 1/Xi , ε∗i = ε i/Xi
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Weighted least squares (WLS) II

I For this model we have homoskedasticity, since:

var(ε∗i ) = X−2i var(ε i ) = σ2

and the OLS estimators of β∗0 and β∗1 have the BLUE property.

I They are Weighted Least Squares estimators (WLS), since the
original data have been weighted in a way that brings the
model back to the classical RM form (incl. homoskedasticity).
Note:

I Robust standard errors only changes the estimated variances
without changing the OLS estimators

I WLS is a different estimator than OLS, so that β̂∗1 6= β̂1, in
this example
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Regression using sample averages I

I Assume that the model is

Yij = β0 + β1Xij + ε ij (11)

for i = 1, 2, . . . , nj and j = 1, 2, . . . , J (number of
sub-samples) and that ε ij has the classical properties which
would have made the OLS estimators BLUE if we could have
estimated the model (11) with individual data.

I Assume that we only have access to sub-sample averages:

Ȳj =
1

nj
∑nj

i=1
Yij and X̄j =

1

nj
∑nj

i=1
Xij

and that we have to estimate the regression

Ȳj = β0 + β1X̄j + ε̄j , j = 1, 2, . . . , J (12)
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Regression using sample averages II

I Can we obtain BLUE estimators of β0 and β1 in this case?
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