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Omitted variable bias I

I Assume that we estimate a simple regression model

Yi = β0 + β1X1i + ε i (1)

by OLS, but that another regression model is

Yi = β∗0 + β∗1X1i + β∗2X2i + ε∗i (2)

where X2i is a second regressor and ε∗i has classical properties
conditional on both X1i and X2i , in particular:

E (ε∗i | X1i ) = 0∀i
E (ε∗i | X2i ) = 0∀i
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Omitted variable bias II

and

E (Yi | X1i ,X2i ) = β∗0 + β∗1X1i + β∗2X2i

i.e., linearity of the conditional expectation function.

I We want to evaluate the OLS estimator β̂1, of (1), in the
light of (2).

I First, show that

β̂1 = β∗1 + β∗2
∑n

i=1(X1i − X̄1)X2i

∑n
i=1(X1i − X̄1)2

+
∑n

i=1(X1i − X̄1)ε∗i
∑n

i=1(X1i − X̄1)2
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Omitted variable bias III

I If X1i and X2i have a well defined joint probability function
(after Yi has been marginalized out from f (Yi ,X1i ,X2i )) we
can use ”plim algebra” (Slutsky’s theorem in Lecture 2) to
show that

plim(β̂1) = β∗1 + β∗2τ12 (3)

τ12 =
cov(X1,X2)

σ2
X1

= ρX1X2

σX2

σX1

(4)

i.e. the population regression coefficient between X2 and X1!

I We can also show (with no extra or stronger assumptions)
that:

E (β̂1) = β∗1 + β∗2τ12 (5)
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Omitted variable bias IV
I Returning to (3) and (4): These expressions are more precise

than eq. (6.1) in SW, because “ρXu = 0” in a regression
model under quite mild assumptions.

I The point is that although E (ε i | X1i ) = 0, there is nothing in
the specification of the simple regression model that implies
E (ε i | X2i ) = 0.

I And it is this possibility: That Y is affected by other variables
than X1, that underlies the omitted variable bias.
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Omitted variable bias V

I In summary (assume that causality is settled from theory, to
keep that issue out of the way for the time being):

I With simple regression we are in general not estimating the
partial effect of a change in X1

I For that to be true, we must have orthogonal regressors
(τ12 = 0), or that Y is independent of X2 (β∗2 = 0).

I In general therefore, simple regression gives us the gross (or
“total”) effect on Y of a change in X1.
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Bi- and multivariate regression I

I In general, the theory of multiple regression covers a large
number of regressors, denoted k , some of them random other
deterministic.

I Still, a lot can be learned by studying the case of k = 2 in
detail first.

I We follow that route, and mention the extension to the case
of k > 2 at the end, without going into the matrix algebra
needed for the general case.
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Model specification
The model can be specified by the linear relationship

Yi = β0 + β1X1i + β2X2i + ε i i = 1, 2, . . . , n (6)

and the set assumptions:

a. Xji (j = 1, 2), (i = 1, 2, . . . , n) can be deterministic or random
For a deterministic variable we assume that at least two values of
the variables are distinct. For random Xs, we assume
var(Xji ) = σ2

Xj
> 0 (j = 1, 2), ρ2X1X2

< 1 and no excess kurtosis
in the distributions

b. E (ε i ) = 0, ∀ i
c. var (ε i ) = σ2, ∀ i
d. cov (ε i , εj ) = 0, ∀ i 6= j ,
e. β0, β1 and σ2 are constant parameters

For the purpose of statistical inference for finite n:

f. ε i ∼ IIN
(
0, σ2

)
.
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Comments to specification I

I a. is formulated to accommodate different data types
(random/deterministic, continuous/binary)

I ρ2X1X2
< 1 is a way of saying that the two random variables

are truly separate variables.

I In many presentations, you will find an assumption about
“absence of exact linear relationships between the variables
often called absence of exact collinearity. But this can only
occur for the case for deterministic variables, and would be an
example of “bad model specification”, e.g., specifying X2i as a
variables with the number 100 as the value for all i . (An
example of the “dummy-variable fallacy/pit-fall”).
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Comments to specification II

I For random variables, we can of course be unlucky and draw a
sample where r2X1X2

is very high. But this “near exact
collinearity” is a property of the sample, not of the regression
model

I b.-d. and f. These are the same as in the case with one
variable. Since we want a model formulation that allows
random explanatory variables they should be interpreted as
conditional on X1i = x1i and X2i = x2i . The explicit
conditioning has been omitted to save notation.
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OLS estimation
Nothing new here: Choose the estimates that minimize

S(β0,β1,β2) =
n

∑
i=1

(Yi − β0 − β1X1i − β2X2i )
2 (7)

or, equivalently, using the same type of re-specification as with simple
regression

S(α,β1,β2) =
n

∑
i=1

(Yi − α− β1(X1i − X 1)− β2(X2i − X 2))
2

where
α = β0 + β1X 1 + β2X 2

I Rest of derivation in class
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OLS estimates I
By solving the 1oc for minimum of S(α,β1,β2) (or S(β0,β1,β2),
we obtain, for β̂1 and β̂2:

β̂1 =
σ̂2
X2

σ̂Y ,X1 − σ̂Y ,X2 σ̂X1,X2

σ̂2
X1

σ̂2
X2
− σ̂2

X1,X2

(8)

β̂2 =
σ̂2
X1

σ̂Y ,X2 − σ̂Y ,X1 σ̂X1,X2

σ̂2
X1

σ̂2
X2
− σ̂2

X1,X2

(9)

where σ̂2
Xj
(j = 1, 2), σ̂Y ,Xj

(j = 1, 2) and σ̂X1,X2 are empirical
variances and covariances.
The estimates for the two versions of the intercepts become:

β̂0 = Ȳ + β̂1X 1 + β̂2X 2

α̂ = Ȳ
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Absence of perfect sample collinearity I

It is clear that (8) for β̂1 and (9) for β̂2 require

M := σ̂2
X1

σ̂2
X2
− σ̂2

X1,X2
= σ̂2

X1
σ̂2
X2
(1− r2X1X2

) > 0

Cannot have perfect empirical correlation between the two
regressors. Must have:

σ̂2
X1

> 0, and σ̂2
X2

> 0 and r2X1X2
< 1⇐⇒ −1 < rX1X2 < 1

I If any one of these conditions should fail, we have exact (or
perfect) collinearity.

I Absence of perfect collinearity is a requirement about the
nature of the sample.
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Absence of perfect sample collinearity II

I The case of rX1X2 = 0 also has a name. It is called perfect
orthogonality. It does not create any problems in (8) or (9).

I In practice, the relevant case is −1 < rX1X2 < 1, i.e. a degree
of collinearity (not perfect)
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Unbiasedness

Expectation I

I Conditional on the values of X1 and X2, β̂1 is still a random
variable because ε i and Yi are random variables.

I In that interpretation β̂1, β̂2, and β̂0 are estimators and we
want to know their expectation, variance, and whether they
are consistent or not.

I Start by considering E (β̂1 | X1,X2), i.e., conditional on all the
values of the two regressors.
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Unbiasedness

Expectation II
I Write β̂1 as

β̂1 =

(
σ̂2
X2

σ̂Y ,X1 − σ̂Y ,X2 σ̂X1,X2

)
M

then E (β̂1 | X1,X2) becomes

E (β̂1 | X1,X2) =
σ̂2
X2

M
E (σ̂Y ,X1 | X1,X2)−

σ̂X1,X2

M
E (σ̂Y ,X2 | X1,X2)

(10)

I Evaluate this in class, in order to show that

E (β̂j ) = E
[
E (β̂j | X1,X2)

]
= βj , j = 1, 2 (11)

since E (ε i | X1,X2) = 0 ∀ i is generic for the regression
model.
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Variance of β̂j

Variance I

Find that (under the classical assumptions of the model):

var(β̂j | X1,X2) =
σ2

nσ̂2
Xj

[
1− r2X1,X2

] , j = 1, 2 (12)

and this also holds unconditionally.

I The BLUE property of the OLS estimators extends to the
multivariate case (will no show)

I The variance (12) is low in samples that are informative about
the “separate contributions” from X1 and X2:

I σ̂2
Xj

high

I r2X1,X2
low
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Variance of β̂j

Variance II

I var(β̂j ) is lowest when r2X1,X2
= 0, the regressors are

orthogonal
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Covariance between β̂1 and β̂2

Covariance I

In many applications need to know cov(β̂1, β̂2).
It is easiest to find by starting from the second normal equation

β̂1σ̂2
X1

+ β̂2σ̂X1,X2 = σ̂YX1

When we take (conditional) variance on both sides, we get

σ̂4
X1
var(β̂1)+ σ̂2

X1X2
var(β̂2)+ 2σ̂2

X1
σ̂X1,X2cov

(
β̂1, β̂2

)
=

1

n2
var(σ̂YX1)

The rhs we have from before:

n−2var(σ̂YX1) = n−2
σ2

n
σ̂2
X1

= n−1σ2σ̂2
X1
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Covariance between β̂1 and β̂2

Covariance II

Insertion of expressions for var(β̂1) and var(β̂2), solving for
cov

(
β̂1, β̂2

)
gives

cov
(

β̂1, β̂2

)
= −σ2

n

σ̂X1X2

M

Algebra details in note on the web-page.
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Consistency

Consistency of estimators I

Show for β̂1

plim
(

β̂1

)
= plim

((
σ̂2
X2

σ̂Y ,X1 − σ̂Y ,X2 σ̂X1,X2

)
M

)

=
plim

(
σ̂2
X2
) plim(σ̂Y ,X1)− plim(σ̂Y ,X2) plim(σ̂X1,X2

)
plimM

Based on the assumptions of the regression model:

plim(σ̂2
Xj
) = σ2

Xj
j = 1, 2

plim(σ̂X1,X2) = σX1X2

plimM = σ2
X1

σ2
X2
− σ2

X1,X2
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Consistency

Consistency of estimators II

plim(σ̂Y ,X1) = β1σ2
X1

+ β2σX1X2 + plim

[
1

n

n

∑
i=1

ε i (X1i − X̄1)

]
= β1σ2

X1
+ β2σX1X2

plim(σ̂Y ,X2) = β1σX1X2 + β2σ2
X2

plim
(

β̂1

)
=

σ2
X2

[
β1σ2

X1
+ β2σX1X2

]
−
[
β1σX1X2 + β2σ2

X2

]
σX1,X2

σ2
X1

σ2
X2
− σ2

X1,X2

=
β1(σ2

X2
σ2
X1
− σ2

X1X2
) + β2σ2

X2
σX1X2 − β2σ2

X2
σX1,X2

σ2
X1

σ2
X2
− σ2

X1,X2

= β1

The OLS estimators β̂0 and β̂2 are also consistent
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