ECON 3150/4150, Spring term 2014. Lecture 7

The multivariate regression model (I)

Ragnar Nymoen
University of Oslo
4 February 2014

References to Lecture 7 and 8

- SW
- Ch. 6
- BN
- Kap 7.1-7.8

Omitted variable bias I

- Assume that we estimate a simple regression model

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\varepsilon_{i} \tag{1}
\end{equation*}
$$

by OLS, but that another regression model is

$$
\begin{equation*}
Y_{i}=\beta_{0}^{*}+\beta_{1}^{*} X_{1 i}+\beta_{2}^{*} X_{2 i}+\varepsilon_{i}^{*} \tag{2}
\end{equation*}
$$

where $X_{2 i}$ is a second regressor and ε_{i}^{*} has classical properties conditional on both $X_{1 i}$ and $X_{2 i}$, in particular:

$$
\begin{aligned}
& E\left(\varepsilon_{i}^{*} \mid X_{1 i}\right)=0 \forall i \\
& E\left(\varepsilon_{i}^{*} \mid X_{2 i}\right)=0 \forall i
\end{aligned}
$$

Omitted variable bias II

and

$$
E\left(Y_{i} \mid X_{1 i}, X_{2 i}\right)=\beta_{0}^{*}+\beta_{1}^{*} X_{1 i}+\beta_{2}^{*} X_{2 i}
$$

i.e., linearity of the conditional expectation function.

- We want to evaluate the OLS estimator $\hat{\beta}_{1}$, of (1), in the light of (2).
- First, show that

$$
\hat{\beta}_{1}=\beta_{1}^{*}+\beta_{2}^{*} \frac{\sum_{i=1}^{n}\left(X_{1 i}-\bar{X}_{1}\right) X_{2 i}}{\sum_{i=1}^{n}\left(X_{1 i}-\bar{X}_{1}\right)^{2}}+\frac{\sum_{i=1}^{n}\left(X_{1 i}-\bar{X}_{1}\right) \varepsilon_{i}^{*}}{\sum_{i=1}^{n}\left(X_{1 i}-\bar{X}_{1}\right)^{2}}
$$

Omitted variable bias III

- If $X_{1 i}$ and $X_{2 i}$ have a well defined joint probability function (after Y_{i} has been marginalized out from $\left.f\left(Y_{i}, X_{1 i}, X_{2 i}\right)\right)$ we can use "plim algebra" (Slutsky's theorem in Lecture 2) to show that

$$
\begin{gather*}
\operatorname{plim}\left(\hat{\beta}_{1}\right)=\beta_{1}^{*}+\beta_{2}^{*} \tau_{12} \tag{3}\\
\tau_{12}=\frac{\operatorname{cov}\left(X_{1}, X_{2}\right)}{\sigma_{X_{1}}^{2}}=\rho_{X_{1} X_{2}} \frac{\sigma_{X_{2}}}{\sigma_{X_{1}}} \tag{4}
\end{gather*}
$$

i.e. the population regression coefficient between X_{2} and X_{1} !

- We can also show (with no extra or stronger assumptions) that:

$$
\begin{equation*}
E\left(\hat{\beta}_{1}\right)=\beta_{1}^{*}+\beta_{2}^{*} \tau_{12} \tag{5}
\end{equation*}
$$

Omitted variable bias IV

- Returning to (3) and (4): These expressions are more precise than eq. (6.1) in SW, because " $\rho_{X_{u}}=0$ " in a regression model under quite mild assumptions.
- The point is that although $E\left(\varepsilon_{i} \mid X_{1 i}\right)=0$, there is nothing in the specification of the simple regression model that implies $E\left(\varepsilon_{i} \mid X_{2 i}\right)=0$.
- And it is this possibility: That Y is affected by other variables than X_{1}, that underlies the omitted variable bias.

Omitted variable bias V

- In summary (assume that causality is settled from theory, to keep that issue out of the way for the time being):
- With simple regression we are in general not estimating the partial effect of a change in X_{1}
- For that to be true, we must have orthogonal regressors $\left(\tau_{12}=0\right)$, or that Y is independent of $X_{2}\left(\beta_{2}^{*}=0\right)$.
- In general therefore, simple regression gives us the gross (or "total") effect on Y of a change in X_{1}.

Bi- and multivariate regression I

- In general, the theory of multiple regression covers a large number of regressors, denoted k, some of them random other deterministic.
- Still, a lot can be learned by studying the case of $k=2$ in detail first.
- We follow that route, and mention the extension to the case of $k>2$ at the end, without going into the matrix algebra needed for the general case.

Model specification

The model can be specified by the linear relationship

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\varepsilon_{i} i=1,2, \ldots, n \tag{6}
\end{equation*}
$$

and the set assumptions:
a. $X_{j i}(j=1,2),(i=1,2, \ldots, n)$ can be deterministic or random For a deterministic variable we assume that at least two values of the variables are distinct. For random $X s$, we assume $\operatorname{var}\left(X_{j i}\right)=\sigma_{X_{j}}^{2}>0(j=1,2), \rho_{X_{1} X_{2}}^{2}<1$ and no excess kurtosis in the distributions
b. $E\left(\varepsilon_{i}\right)=0, \forall i$
c. $\operatorname{var}\left(\varepsilon_{i}\right)=\sigma^{2}, \forall i$
d. $\operatorname{cov}\left(\varepsilon_{i}, \varepsilon_{j}\right)=0, \forall i \neq j$,
e. β_{0}, β_{1} and σ^{2} are constant parameters

For the purpose of statistical inference for finite n :

$$
\text { f. } \varepsilon_{i} \sim I I N\left(0, \sigma^{2}\right) .
$$

Comments to specification I

- a. is formulated to accommodate different data types (random/deterministic, continuous/binary)
- $\rho_{X_{1} X_{2}}^{2}<1$ is a way of saying that the two random variables are truly separate variables.
- In many presentations, you will find an assumption about "absence of exact linear relationships between the variables often called absence of exact collinearity. But this can only occur for the case for deterministic variables, and would be an example of "bad model specification", e.g., specifying $X_{2 i}$ as a variables with the number 100 as the value for all i. (An example of the "dummy-variable fallacy/pit-fall").

Comments to specification II

- For random variables, we can of course be unlucky and draw a sample where $r_{X_{1} X_{2}}^{2}$ is very high. But this "near exact collinearity" is a property of the sample, not of the regression model
- b.-d. and f. These are the same as in the case with one variable. Since we want a model formulation that allows random explanatory variables they should be interpreted as conditional on $X_{1 i}=x_{1 i}$ and $X_{2 i}=x_{2 i}$. The explicit conditioning has been omitted to save notation.

OLS estimation

Nothing new here: Choose the estimates that minimize

$$
\begin{equation*}
S\left(\beta_{0}, \beta_{1}, \beta_{2}\right)=\sum_{i=1}^{n}\left(Y_{i}-\beta_{0}-\beta_{1} X_{1 i}-\beta_{2} X_{2 i}\right)^{2} \tag{7}
\end{equation*}
$$

or, equivalently, using the same type of re-specification as with simple regression

$$
S\left(\alpha, \beta_{1}, \beta_{2}\right)=\sum_{i=1}^{n}\left(Y_{i}-\alpha-\beta_{1}\left(X_{1 i}-\bar{X}_{1}\right)-\beta_{2}\left(X_{2 i}-\bar{X}_{2}\right)\right)^{2}
$$

where

$$
\alpha=\beta_{0}+\beta_{1} \bar{X}_{1}+\beta_{2} \bar{X}_{2}
$$

- Rest of derivation in class

OLS estimates I

By solving the 1oc for minimum of $S\left(\alpha, \beta_{1}, \beta_{2}\right)$ (or $S\left(\beta_{0}, \beta_{1}, \beta_{2}\right)$, we obtain, for $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$:

$$
\begin{align*}
& \hat{\beta}_{1}=\frac{\hat{\sigma}_{X_{2}}^{2} \hat{\sigma}_{Y, X_{1}}-\hat{\sigma}_{Y, X_{2}} \hat{\sigma}_{X_{1}, X_{2}}}{\hat{\sigma}_{X_{1}}^{2} \hat{\sigma}_{X_{2}}^{2}-\hat{\sigma}_{X_{1}, X_{2}}^{2}} \tag{8}\\
& \hat{\beta}_{2}=\frac{\hat{\sigma}_{X_{1}}^{2} \hat{\sigma}_{Y, X_{2}}-\hat{\sigma}_{Y, X_{1}} \hat{\sigma}_{X_{1}, X_{2}}}{\hat{\sigma}_{X_{1}}^{2} \hat{\sigma}_{X_{2}}^{2}-\hat{\sigma}_{X_{1}, X_{2}}^{2}} \tag{9}
\end{align*}
$$

where $\hat{\sigma}_{X_{j}}^{2}(j=1,2), \hat{\sigma}_{Y, X_{j}}(j=1,2)$ and $\hat{\sigma}_{X_{1}, X_{2}}$ are empirical variances and covariances.
The estimates for the two versions of the intercepts become:

$$
\begin{aligned}
\hat{\beta}_{0} & =\bar{Y}+\hat{\beta}_{1} \bar{X}_{1}+\hat{\beta}_{2} \bar{X}_{2} \\
\hat{\alpha} & =\bar{Y}
\end{aligned}
$$

Absence of perfect sample collinearity I

It is clear that (8) for $\hat{\beta}_{1}$ and (9) for $\hat{\beta}_{2}$ require

$$
M:=\hat{\sigma}_{X_{1}}^{2} \hat{\sigma}_{X_{2}}^{2}-\hat{\sigma}_{X_{1}, X_{2}}^{2}=\hat{\sigma}_{X_{1}}^{2} \hat{\sigma}_{X_{2}}^{2}\left(1-r_{X_{1} X_{2}}^{2}\right)>0
$$

Cannot have perfect empirical correlation between the two regressors. Must have:

$$
\hat{\sigma}_{X_{1}}^{2}>0, \text { and } \hat{\sigma}_{X_{2}}^{2}>0 \text { and } r_{X_{1} X_{2}}^{2}<1 \Longleftrightarrow-1<r_{X_{1} X_{2}}<1
$$

- If any one of these conditions should fail, we have exact (or perfect) collinearity.
- Absence of perfect collinearity is a requirement about the nature of the sample.

Absence of perfect sample collinearity II

- The case of $r_{X_{1} X_{2}}=0$ also has a name. It is called perfect orthogonality. It does not create any problems in (8) or (9).
- In practice, the relevant case is $-1<r_{x_{1} x_{2}}<1$, i.e. a degree of collinearity (not perfect)

Expectation I

- Conditional on the values of X_{1} and $X_{2}, \hat{\beta}_{1}$ is still a random variable because ε_{i} and Y_{i} are random variables.
- In that interpretation $\hat{\beta}_{1}, \hat{\beta}_{2}$, and $\hat{\beta}_{0}$ are estimators and we want to know their expectation, variance, and whether they are consistent or not.
- Start by considering $E\left(\hat{\beta}_{1} \mid X_{1}, X_{2}\right)$, i.e., conditional on all the values of the two regressors.

Expectation II

- Write $\hat{\beta}_{1}$ as

$$
\hat{\beta}_{1}=\frac{\left(\hat{\sigma}_{X_{2}}^{2} \hat{\sigma}_{Y, X_{1}}-\hat{\sigma}_{Y, X_{2}} \hat{\sigma}_{X_{1}, X_{2}}\right)}{M}
$$

then $E\left(\hat{\beta}_{1} \mid X_{1}, X_{2}\right)$ becomes

$$
\begin{equation*}
E\left(\hat{\beta}_{1} \mid X_{1}, X_{2}\right)=\frac{\hat{\sigma}_{X_{2}}^{2}}{M} E\left(\hat{\sigma}_{Y, X_{1}} \mid X_{1}, X_{2}\right)-\frac{\hat{\sigma}_{X_{1}, X_{2}}}{M} E\left(\hat{\sigma}_{Y, X_{2}} \mid X_{1}, X_{2}\right) \tag{10}
\end{equation*}
$$

- Evaluate this in class, in order to show that

$$
\begin{equation*}
E\left(\hat{\beta}_{j}\right)=E\left[E\left(\hat{\beta}_{j} \mid X_{1}, X_{2}\right)\right]=\beta_{j}, j=1,2 \tag{11}
\end{equation*}
$$

since $E\left(\varepsilon_{i} \mid X_{1}, X_{2}\right)=0 \forall i$ is generic for the regression model.

Variance I

Find that (under the classical assumptions of the model):

$$
\begin{equation*}
\operatorname{var}\left(\hat{\beta}_{j} \mid X_{1}, X_{2}\right)=\frac{\sigma^{2}}{n \hat{\sigma}_{X_{j}}^{2}\left[1-r_{X_{1}, X_{2}}^{2}\right]}, j=1,2 \tag{12}
\end{equation*}
$$

and this also holds unconditionally.

- The BLUE property of the OLS estimators extends to the multivariate case (will no show)
- The variance (12) is low in samples that are informative about the "separate contributions" from X_{1} and X_{2} :
- $\hat{\sigma}_{X_{j}}^{2}$ high
- $r_{X_{1}, X_{2}}^{2}$ low

Variance II

- $\operatorname{var}\left(\hat{\beta}_{j}\right)$ is lowest when $r_{X_{1}, X_{2}}^{2}=0$, the regressors are orthogonal

Covariance I

In many applications need to know $\operatorname{cov}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)$.
It is easiest to find by starting from the second normal equation

$$
\hat{\beta}_{1} \hat{\sigma}_{X_{1}}^{2}+\hat{\beta}_{2} \hat{\sigma}_{X_{1}, X_{2}}=\hat{\sigma}_{Y X_{1}}
$$

When we take (conditional) variance on both sides, we get

$$
\hat{\sigma}_{X_{1}}^{4} \operatorname{var}\left(\hat{\beta}_{1}\right)+\hat{\sigma}_{X_{1} X_{2}}^{2} \operatorname{var}\left(\hat{\beta}_{2}\right)+2 \hat{\sigma}_{X_{1}}^{2} \hat{\sigma}_{X_{1}, X_{2}} \operatorname{cov}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)=\frac{1}{n^{2}} \operatorname{var}\left(\hat{\sigma}_{Y X_{1}}\right)
$$

The rhs we have from before:

$$
n^{-2} \operatorname{var}\left(\hat{\sigma}_{Y X_{1}}\right)=n^{-2} \frac{\sigma^{2}}{n} \hat{\sigma}_{X_{1}}^{2}=n^{-1} \sigma^{2} \hat{\sigma}_{X_{1}}^{2}
$$

Covariance II

Insertion of expressions for $\operatorname{var}\left(\hat{\beta}_{1}\right)$ and $\operatorname{var}\left(\hat{\beta}_{2}\right)$, solving for $\operatorname{cov}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)$ gives

$$
\operatorname{cov}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)=-\frac{\sigma^{2}}{n} \frac{\hat{\sigma}_{X_{1} X_{2}}}{M}
$$

Algebra details in note on the web-page.

Consistency of estimators I

Show for $\hat{\beta}_{1}$

$$
\begin{aligned}
\operatorname{plim}\left(\hat{\beta}_{1}\right) & =\operatorname{plim}\left(\frac{\left(\hat{\sigma}_{X_{2}}^{2} \hat{\sigma}_{Y, X_{1}}-\hat{\sigma}_{Y, X_{2}} \hat{\sigma}_{X_{1}, X_{2}}\right)}{M}\right) \\
& =\frac{\operatorname{plim}\left(\hat{\sigma}_{X_{2}}^{2}\right) \operatorname{plim}\left(\hat{\sigma}_{Y, X_{1}}\right)-\operatorname{plim}\left(\hat{\sigma}_{Y, X_{2}}\right) \operatorname{plim}\left(\hat{\sigma}_{X_{1}, X_{2}}\right)}{\operatorname{plim} M}
\end{aligned}
$$

Based on the assumptions of the regression model:

$$
\begin{aligned}
\operatorname{plim}\left(\hat{\sigma}_{X_{j}}^{2}\right) & =\sigma_{X_{j}}^{2} j=1,2 \\
\operatorname{plim}\left(\hat{\sigma}_{X_{1}, X_{2}}\right) & =\sigma_{X_{1} X_{2}} \\
\operatorname{plim} M & =\sigma_{X_{1}}^{2} \sigma_{X_{2}}^{2}-\sigma_{X_{1}, X_{2}}^{2}
\end{aligned}
$$

Consistency of estimators II

$$
\begin{aligned}
\operatorname{plim}\left(\hat{\sigma}_{Y, X_{1}}\right) & =\beta_{1} \sigma_{X_{1}}^{2}+\beta_{2} \sigma_{X_{1} X_{2}}+\operatorname{plim}\left[\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}\left(X_{1 i}-\bar{X}_{1}\right)\right] \\
& =\beta_{1} \sigma_{X_{1}}^{2}+\beta_{2} \sigma_{X_{1} X_{2}} \\
\operatorname{plim}\left(\hat{\sigma}_{Y, X_{2}}\right) & =\beta_{1} \sigma_{X_{1} X_{2}}+\beta_{2} \sigma_{X_{2}}^{2}
\end{aligned}
$$

$$
\operatorname{plim}\left(\hat{\beta}_{1}\right)=\frac{\sigma_{X_{2}}^{2}\left[\beta_{1} \sigma_{X_{1}}^{2}+\beta_{2} \sigma_{X_{1} X_{2}}\right]-\left[\beta_{1} \sigma_{X_{1} X_{2}}+\beta_{2} \sigma_{X_{2}}^{2}\right] \sigma_{X_{1}, X_{2}}}{\sigma_{X_{1}}^{2} \sigma_{X_{2}}^{2}-\sigma_{X_{1}, X_{2}}^{2}}
$$

$$
=\frac{\beta_{1}\left(\sigma_{X_{2}}^{2} \sigma_{X_{1}}^{2}-\sigma_{X_{1} X_{2}}^{2}\right)+\beta_{2} \sigma_{X_{2}}^{2} \sigma_{X_{1} X_{2}}-\beta_{2} \sigma_{X_{2}}^{2} \sigma_{X_{1}, X_{2}}}{\sigma_{X_{1}}^{2} \sigma_{X_{2}}^{2}-\sigma_{X_{1}, X_{2}}^{2}}
$$

$$
=\beta_{1}
$$

The OLS estimators $\hat{\beta}_{0}$ and $\hat{\beta}_{2}$ are also consistent

