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This lecture:

I References are the same as noted in slide set to Lecture 7.

I t-ratios for the multivariate case (although other tests for the
multivariate regression come in Lecture 9 and 10).

I Measures of degree of fit

I Interpretation of the model when all the regressors are
indicator variables (dummies)
—and when one or more dummys are regressors together with
continuous variables.
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Estimated standard errors and t-values I

I Just like in simple regression we need to replace
√

Var(β̂j ) by

ŝe(β̂j ) =

√√√√ σ̂2

nσ̂2
Xj

[
1− r 2

X1,X2

]
where σ̂2 is an estimator.

I Also, by the same logic as before we choose the unbiased
estimator

σ̂2 =
∑n

i=1 ε̂2
i

n− 3
. (1)

for σ2, where ε̂ i are the OLS residuals from the bivariate
regression model.
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Estimated standard errors and t-values II
I Note n− 3 instead of n− 2 since we have now 3 exact

relationships between the n residuals.

I Again, in direct parallel to the model with a single regressor,
we now have

t =
β̂j − E (β̂j )

ŝe(β̂j )
j = 1, 2. (2)

I which is used in hypotheses testing an in the different forms
of interval estimation.

I Some examples of null hypotheses that can be tested with the
aid of the t-ratios:

I H0: β1 = β0
1

I H0: β2 = β0
2

I H0: β1 + β2 = a0
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Estimated standard errors and t-values III

I Use N(0, 1) or t(n− 3) for determination of critical values,
confidence interval limits, and p-values
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Frisch-Waugh theorem I

I We have several times stated that the βj (j = 1, 2, . . . k) in
the classical multiple regression model

Yi = β0 + ∑k

j=1
βjXji + ε i

shall be interpreted as partial effects, since

∂E (Y | X1i , . . . Xki )

∂Xji
= βj ∀ j

I Two caveats:

I The partial derivative is not relevant if
E (Y | X1i , X2i ) = β0 + β1Xi + β2X 2

i + εi for example
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Frisch-Waugh theorem II
I Cannot take derivative with respect to an Xj which is an

indicator variable (see below)

I We can give an alternative derivation of the OLS estimators
β̂1 and β̂2 that shows that they are indeed (BLUE) estimators
of the partial derivatives.

I Assume first that we have observations of Yi and X1i that
have been “cleaned” of the influence of X2i .

I Call these observations
{

eY |X2 i , eX1|X2 i

}
i = 1, 2, . . . , n.

I Based on this data set we could estimate the partial effect of
X1 on Y from the simple regression model

eY |X2 i = β∗0 + β∗1eX1|X2 i + ε∗i (3)

The question is: how to obtain the data set
{

eY |X2 i , eX1|X2 i

}
i = 1, 2, . . . , n?
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Frisch-Waugh theorem III

I Rest, in class and in a note

I Conclusion: We obtain the same estimate of β̂1in two ways:

1. Estimate the k = 2 regression model by OLS

2. “Regress out” the effect that X2 has on Y and X1, and use
these residuals to estimate the partial effect of X1 on Y .

This result is a special case of the general Frisch-Waugh theorem.
This theorem, dating back to an 1933 journal article is central in
modern econometrics, and you will encounter it in more advanced
textbook from the last decade and in later courses.
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Example: Andy’s burger outlet

Adjusted R squared I

I Example: We have a data set with observations (n = 75) of
sales income (in USD) per outlet, price per burger and USD
spent on advertisement.

I

I R-squared = 1396.53921/3115.48202 = 0.44826
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Example: Andy’s burger outlet

Adjusted R squared II

I R2 is non-decrasing in the number of regressors included. Adj
R2 corrects for that:

I Adj R squared = 1− 1718.94281
3115.48202 · (

(74−1)
(74−2−1)

) = 0.43272

R
2
= 1−

1

n− k − 1
1

n− 1

n

∑
i=1

ε̂2
i

n

∑
i=1

(Yi − Y )2

. (4)

k = the number of explanatory variables including the intercept.

I Both R2 and Adj R2are descriptive measures of
goodness-of-fit. They are not test statistics.
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Example: Andy’s burger outlet

Non-invariance of R-squared I

I Assume that we estimate

salai = β0 + β1pricei + β2adverti + ε i

where sala is a new lhs variable defined as
salai = salesi − adverti

I We then know that OLS gives β̂0 = 118.9136, β̂1 =
−7.907856, β̂2 = 1.86− 1 = 0.86258

I All three estimated standard errors are unchanged from the
first regression

I Moreover, we know that RSS = 1718.94294 as in the original
formulation

I But R2 = 0.424968 which is different. What has happened?
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Example: Andy’s burger outlet

Non-invariance of R-squared II

I R2 is not invariant to re-parameterizations of the model
(changes that do no affect the disturbance)
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Example: Andy’s burger outlet

Measures of fit that are more invariant than R-sq I

I Root MSE is unchanged. It is
√

σ̂2 =√
1718.94309/72 =

√
23. 874 = 4. 8861

I This is SER in eq. (6.13) in SW
I Hence, our estimate of σ2 is a more invariant measure of fit than

both R2 and R2-adj
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Example: Andy’s burger outlet

Measures of fit that are more invariant than R-sq II

I σ̂ is not invariant to how the data is scaled. The coefficient of
variation

σ̂

Y
100

is often reported. It is the residual standard deviation as a
percent of the level of the dependent variable (Y )

I Although this is jumping ahead a little: We can note that if the
data have been log-transformed, σ̂ · 100 has a similar
interpretation, since

ε̂ i = ln(Yi/Ŷi ) = ln(
Yi − Ŷi

Ŷi

+ 1) ≈ Yt − Ŷi

Ŷi

,

and ε̂ i100 becomes approximately equal to the percentage
deviation between actual and fitted Y .
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Representing qualitative explanatory factors I

I Qualitative explanatory variables are important in econometric
models:

I Discrete levels of qualifications;
I policy on/off;
I seasonal effects on consumption, temporary or permanent

structural breaks etc

I We represent qualitative factors by one or more indicator
variables or dummies.

I We treat them as ordinary regressors, they represent no new
problems for estimation and inference

I The difference from continuous regressors lie in the
interpretation of the coefficients of the dummies
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Indicator variables as the only explanatory variable I

I In the simplest case we have (as we have seen)

Yi = β0 + β1D1i + ε i (5)

where Di is an indicator variable:

D1i =

{
1 if individual i belongs to category 1
0 else

I As we have seen, the OLS estimators are

β̂0 = Ȳ0

β̂1 = Ȳ1 − Ȳ0 (6)
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Indicator variables as the only explanatory variable II
I In modern terminology (6) is called the difference estimator .

D1i = 1 is then typically representing “individual in treatment
group” and D1i = 0 “no treatment” (control group)

I The difference estimator can be extended to data sets where
we observe the individual Y ’s before and after a treatment
period, and where we can define a second qualitative variable

D2t =

{
1 if the period is after treatment
0 else

I This leads to the difference-in-difference estimator in which is
the OLS estimator of β3 in the multivariate regression model:

Yit = β0 + β1D1i + β2D2t + β3D1iD2t + ε it (7)

I Graph in Class
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The combination rule for dummy variables I

I We can use several dummy variables for several qualitative
factors in the same model providing we observe the following
rule:
If the intercept is included in the equation, then no-sub group
of additive dummy variable should sum to a constant values.

I The purpose of this rule is to avoid creating perfect
multicollinearity in the form of the “dummy variable trap”.

I Operationalization: Assume that the qualitative factor is
made up of m categories: it is represented in the model by
m− 1 dummy variables. The left-out category is called the
reference value

I In the simple model we had category 0 and 1. That factor is
represented by the single variable D1i .
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Dummys together with continuous variables I

I A common case is that k−variable regression model contains
both continuous variables and dummies as regressors

I Example: log-linear consumption function for quarterly data:

ln(Ct) = β0 + β1 ln(INCt) + β2D1t + β3D2t + β4D3t + εt
(8)

where C is private consumption (in real terms), INC :
household disposable income and

Dji =

{
1, if j quarter
0, else

, j = 1, 2, 3.

4th quarter is the reference value of the qualitative variable
“seasonality”.

19 / 22



t-tests Estimating partial derivatives Measures of goodness of fit Indicator variables as regressors

Dummys together with continuous variables II

I β1 is the “marginal propensity to consume” (in elasticity
form!)

I β2, β3 and β4 represent quarterly shifts in the intercept
relative to the reference quarter: They are NOT
derivatives!

I Example in class.
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Interaction variables I

I Dummies can be uses to model changes in the slope
coefficients.

I An alternative model to (8) might be

ln(Ct) = β0 + β1 ln(INCt) + β2 ln(INCt) ·D4t

+ β3D1t + β4D2t + β5D3t + εt

where

D4t =

{
1 if t after financial deregulation
0 else

I The hypothesis is that the elasticity ∂ ln(Ct)/∂ ln(INCt) was
permanently affected by easier access to credit etc.
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Interaction variables II

I If H0 : β2 = 0 is rejected, we have evidence of a structural
break: One single regression function is not representative of
the whole sample.
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