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This lecture:

» References are the same as noted in slide set to Lecture 7.

> t-ratios for the multivariate case (although other tests for the
multivariate regression come in Lecture 9 and 10).

> Measures of degree of fit

> Interpretation of the model when all the regressors are
indicator variables (dummies)
—and when one or more dummys are regressors together with
continuous variables.
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Estimated standard errors and t-values |

> Just like in simple regression we need to replace 4/ Var(ﬁj) by

. 02

) 2
n(TXj [1 — rX1,X2}

2

where < is an estimator.

> Also, by the same logic as before we choose the unbiased

estimator
2 i 1§2'
0 ===1 1
3 (1)

for 02, where &; are the OLS residuals from the bivariate
regression model.
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Estimated standard errors and t-values Il

>

Note n — 3 instead of n — 2 since we have now 3 exact
relationships between the n residuals.

Again, in direct parallel to the model with a single regressor,

we now have . .
:ﬁJA A(ﬁJ)J:]-,z (2)
se(p;)
which is used in hypotheses testing an in the different forms
of interval estimation.

Some examples of null hypotheses that can be tested with the
aid of the t-ratios:

> Ho: 1= B9

> Ho: B2 = B3

> Ho: ﬁl-l-ﬁzzao
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Estimated standard errors and t-values IlI

» Use N(0,1) or t(n— 3) for determination of critical values,
confidence interval limits, and p-values
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Frisch-Waugh theorem |

» We have several times stated that the B; (j =1,2,...k) in
the classical multiple regression model

k
Yi = Bo+ Zj:1 BiXii + ¢&;
shall be interpreted as partial effects, since

IE(Y | Xui, ... Xii)
aX;i

=BV

» Two caveats:

> The partial derivative is not relevant if
E(Y | X1j, Xoi) = Bo + B1X; + ﬁinz + ¢; for example
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Frisch-Waugh theorem I

» Cannot take derivative with respect to an X; which is an
indicator variable (see below)

We can give an alternative derivation of the OLS estimators
B1 and By that shows that they are indeed (BLUE) estimators
of the partial derivatives.

Assume first that we have observations of Y; and Xj; that
have been “cleaned” of the influence of X5;.

Call these observations {ey|x,;, €x,x,i} I =1,2,...,n.

Based on this data set we could estimate the partial effect of
X1 on Y from the simple regression model

eyxyi = Po+ Biex i + € (3)

The question is:  how to obtain the data set {6y|X2,', exl‘xz,-}
i=1,2,...,n?
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Frisch-Waugh theorem Il|

» Rest, in class and in a note

» Conclusion: We obtain the same estimate of B1in two ways:

1. Estimate the k = 2 regression model by OLS

2. “Regress out” the effect that X, has on Y and Xi, and use
these residuals to estimate the partial effect of X; on Y.

This result is a special case of the general Frisch-Waugh theorem.
This theorem, dating back to an 1933 journal article is central in
modern econometrics, and you will encounter it in more advanced
textbook from the last decade and in later courses.
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Indicator variables as regressors

Example: Andy's burger outlet

Adjusted R squared |

» Example: We have a data set with observations (n = 75) of
sales income (in USD) per outlet, price per burger and USD
spent on advertisement.

>

. reg sales price advert

Source Ss df MS Number of obs = 75
FC 2, 72) = 29.25

Mode1 1396.53921 2 698.269603 Prob > F = 0.0000
Residual 1718.94281 72 23.8742057 R-squared = 0.4483
Adj R-squared = 0.4329

Total 3115.48202 74 42.1011083 Root MSE = 4.8861
sales Coef.  sStd. Err. t P>[tl| [95% Conf. Intervall
price -7.907856  1.095993 -7.22  0.000 -10.09268 -5.723034
advert 1.862584  .6831955 2.73 0.008 -5006587 3.224509
_cons 118.9136  6.351638 18.72  0.000 106.2519 131.5754

» R-squared = 1396.53921/3115.48202 = 0.44826
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: :

Adjusted R squared Il

» R? is non-decrasing in the number of regressors included. Adj
R? corrects for that:

» Adj R squared = 1 — J118:94281 ((714211)) = 0.43272

1 n§2_
n—k—1 ;LI
R =1-— - —. (4)
o1 L(YimY)?
i=1

k = the number of explanatory variables including the intercept.

» Both R%and Adj R?are descriptive measures of
goodness-of-fit. They are not test statistics.
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Example: Andy's burger outlet
;

Non-invariance of R-squared |
» Assume that we estimate
salaj = Bo + Biprice; + Poadvert; + ¢;

where sala is a new |hs variable defined as
sala; = sales; — advert;

» We then know that OLS gives Bo = 118.9136, B; =
—7.907856, By = 1.86 — 1 = 0.86258

> All three estimated standard errors are unchanged from the
first regression

» Moreover, we know that RSS = 1718.94294 as in the original
formulation

» But R? = 0.424968 which is different. What has happened?
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Non-invariance of R-squared I

» R? is not invariant to re-parameterizations of the model
(changes that do no affect the disturbance)
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Example: Andy's burger outlet

Measures of fit that are more invariant than R-sq |

- reg sala price advert

Source ss df MS Number of obs = 75
F( 2, 72) = 26.61

Model 1270.35665 2 635.178327 Prob > F = 0.0000
Residual 1718.94309 72 23.8742096 R-squared = 0.4250
Adj R-squared = 0.4090

Total 2989.29974 74 40.3959425 Root MSE = 4.8861
sala Coef. std. Err. t P=|t]| [95% Conf. Intervall]
price -7.907856 1.095993 -7.22 0.000 -10.09268 -5.723033
advert .8625836 .6831955 1.26 0.211 -.4993417 2.224509
_cons 118.9136 6.351638 18.72 0.000 106.2519 131.5754

» Root MSE is unchanged. It is V2 =
\/1718.94309/72 = /23.874 = 4.8861

» This is SER in eq. (6.13) in SW

» Hence, our estimate of 02 is a more invariant measure of fit than
both R? and R?-adj
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Example: Andy's burger outlet

Measures of fit that are more invariant than R-sq Il

» ( is not invariant to how the data is scaled. The coefficient of
variation R
o
—100
Y

is often reported. It is the residual standard deviation as a
percent of the level of the dependent variable (Y)

» Although this is jumping ahead a little: We can note that if the
data have been log-transformed, ¢ - 100 has a similar
interpretation, since

Y, - V; Y= Vi
& =In(Y;/Yi)=In = +1) = ——,
e/ ¥y = gy 2 Ve

i i

and £;100 becomes approximately equal to the percentage
deviation between actual and fitted Y.
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Representing qualitative explanatory factors |

» Qualitative explanatory variables are important in econometric
models:
» Discrete levels of qualifications;
> policy on/off;
» seasonal effects on consumption, temporary or permanent
structural breaks etc

> We represent qualitative factors by one or more indicator
variables or dummies.

» We treat them as ordinary regressors, they represent no new
problems for estimation and inference

» The difference from continuous regressors lie in the
interpretation of the coefficients of the dummies

15/22



t-tests Estimating partial derivatives Measures of goodness of fit Indicator variables as regressors
000000

Indicator variables as the only explanatory variable |

> In the simplest case we have (as we have seen)
Y: = Bo + B1D1j + & (5)
where D; is an indicator variable:

1 if individual i belongs to category 1
Dy =
0 else

» As we have seen, the OLS estimators are

Bo= Yo
pr=Y1-Yo (6)
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Indicator variables as the only explanatory variable |l
> In modern terminology (6) is called the difference estimator .

D1; = 1 is then typically representing “individual in treatment
group” and D;; = 0 "no treatment” (control group)

» The difference estimator can be extended to data sets where
we observe the individual Y 's before and after a treatment
period, and where we can define a second qualitative variable

1 if the period is after treatment
Dy =
0 else

» This leads to the difference-in-difference estimator in which is
the OLS estimator of B3 in the multivariate regression model:

Yit = Bo + B1D1i + B2Dar + B3D1iDot + €t (7)

> Graph in Class
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The combination rule for dummy variables |

» We can use several dummy variables for several qualitative
factors in the same model providing we observe the following
rule:

If the intercept is included in the equation, then no-sub group
of additive dummy variable should sum to a constant values.

> The purpose of this rule is to avoid creating perfect
multicollinearity in the form of the “dummy variable trap”.

» Operationalization: Assume that the qualitative factor is
made up of m categories: it is represented in the model by
m — 1 dummy variables. The left-out category is called the
reference value

> In the simple model we had category 0 and 1. That factor is
represented by the single variable Dy;.
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Dummys together with continuous variables |

» A common case is that k—variable regression model contains
both continuous variables and dummies as regressors

» Example: log-linear consumption function for quarterly data:

In(Ct) = Bo + B1In(INC;) + B2D1e + B3Dae + BaDse + &
(8)
where C is private consumption (in real terms), INC:
household disposable income and

~_J 1, if j quarter .
DJ_{O,eIse J=123

4th quarter is the reference value of the qualitative variable

“seasonality” .
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Indicator variables as regressors

Dummys together with continuous variables |l

> Bi1 is the “marginal propensity to consume” (in elasticity
form!)

> B2, B3 and B4 represent quarterly shifts in the intercept
relative to the reference quarter: They are NOT
derivatives!

» Example in class.
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Interaction variables |

» Dummies can be uses to model changes in the slope
coefficients.

> An alternative model to (8) might be

|n(Ct) = ,BO + ‘51 |n(INCt) + [52 |n(INCt) - Dy
+ B3D1t + BaDore + PsD3e + €

where

1 if t after financial deregulation
Dyt =
0 else

» The hypothesis is that the elasticity dIn(C;)/dIn(INC;) was
permanently affected by easier access to credit etc.
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Interaction variables Il

> If Ho: P2 = 0 is rejected, we have evidence of a structural
break: One single regression function is not representative of
the whole sample.
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