Lecture note about $\operatorname{cov}\left(\hat{\alpha}, \hat{\beta}_{1}\right)$ to accompany Lecture 4 slide

 setRagnar Nymoen

January 23, 2014

This note is a translation of Appendix 3.A in BN. We include it as documentation and for completeness. If you are interested in this kind of exercise and can formulate a more elegant proof, let me know!

With reference to the notation in Lecture 4 we have

$$
\begin{align*}
\operatorname{Cov}\left(\hat{\alpha}, \hat{\beta}_{1}\right) & =E\left[(\hat{\alpha}-\alpha)\left(\hat{\beta}_{1}-\beta_{1}\right)\right]=E\left[\hat{\alpha}\left(\hat{\beta}_{1}-\beta_{1}\right)-\alpha\left(\hat{\beta}_{1}-\beta_{1}\right)\right] \\
& =E\left[\hat{\alpha}\left(\hat{\beta}_{1}-\beta_{1}\right)\right] \tag{1}
\end{align*}
$$

and we want to show that $E\left[\hat{\alpha}\left(\hat{\beta}_{1}-\beta_{1}\right)\right]=0$.
Start but noting that $\hat{\beta}_{1}-\beta_{1}$:

$$
\begin{align*}
\hat{\beta}_{1}-\beta_{1} & =\hat{\beta}_{1}-E\left(\hat{\beta}_{1}\right)= \tag{2}\\
& =\frac{\sum_{i=1}^{n} Y_{i}\left(X_{i}-\bar{X}\right)}{n \hat{\sigma}_{x}^{2}}-\frac{\sum_{i=1}^{n} E\left(Y_{i}\right)\left(X_{i}-\bar{X}\right)}{n \hat{\sigma}_{x}^{2}} \\
& =\frac{1}{n \hat{\sigma}_{x}^{2}} \sum_{i=1}^{n}\left[Y_{i}-E\left(Y_{i}\right)\right]\left(X_{i}-\bar{X}\right) \\
& =\frac{1}{n \hat{\sigma}_{x}^{2}} \sum_{i=1}^{n} \varepsilon_{i}\left(X_{i}-\bar{X}\right),
\end{align*}
$$

where we have used that

$$
Y_{i}-E\left(Y_{i}\right)=Y_{i}-\alpha-\beta_{1}\left(X_{i}-\bar{X}\right)=\varepsilon_{i}
$$

Next, use the expression $\hat{\beta}_{1}-\beta_{1}$ in the definition of $\operatorname{cov}\left(\hat{\alpha}, \hat{\beta}_{1}\right)$ in (1):

$$
\begin{aligned}
E\left[\hat{\alpha}\left(\hat{\beta}_{1}-\beta_{1}\right)\right] & =E\left[\frac{1}{n} \sum_{j=1}^{n} Y_{j} \frac{1}{n \hat{\sigma}_{x}^{2}} \sum_{i=1}^{n} \varepsilon_{i}\left(X_{i}-\bar{X}\right)\right] \\
& =\frac{1}{n^{2} \hat{\sigma}_{x}^{2}} E\left[\sum_{j=1}^{n} Y_{j} \sum_{i=1}^{n} \varepsilon_{i}\left(X_{i}-\bar{X}\right)\right],
\end{aligned}
$$

where we have used $\hat{\alpha}=\bar{Y}$.
Consider the case of $n=2$: By inspection, the expression after the second equality sign becomes

$$
\begin{aligned}
& \frac{1}{4 \hat{\sigma}_{x}^{2}} E\left[\sum_{j=1}^{2} Y_{j} \sum_{i=1}^{2} \varepsilon_{i}\left(X_{i}-\bar{X}\right)\right] \\
& =\frac{1}{4 \hat{\sigma}_{x}^{2}}\left\{E\left[Y_{1} \varepsilon_{1}\left(X_{1}-\bar{X}\right)+Y_{1} \varepsilon_{2}\left(X_{2}-\bar{X}\right)+Y_{2} \varepsilon_{1}\left(X_{1}-\bar{X}\right)+Y_{2} \varepsilon_{2}\left(X_{2}-\bar{X}\right)\right]\right\}
\end{aligned}
$$

i.e., the sum of all cross products between Y_{j} and $\varepsilon_{i}\left(X_{i}-\bar{X}\right)$. A typical term in $\sum_{j=1}^{n} Y_{j} \sum_{i=1}^{n} \varepsilon_{i}\left(X_{i}-\bar{X}\right)$ is

$$
\begin{aligned}
E\left[Y_{j} \varepsilon_{i}\left(X_{i}-\bar{X}\right)\right] & =E\left\{\left[\alpha+\beta_{1}\left(X_{j}-\bar{X}\right)+\varepsilon_{j}\right] \varepsilon_{i}\left(X_{i}-\bar{X}\right)\right\} \\
& =E\left[\varepsilon_{j} \varepsilon_{i}\left(X_{i}-\bar{X}\right)\right] \\
& = \begin{cases}0 & \text { when } i \neq j \\
\sigma^{2}\left(X_{i}-\bar{X}\right), & \text { when } i=j(n \text { times }),\end{cases}
\end{aligned}
$$

By this argument, we see that the expression for $\operatorname{Cov}\left(\hat{\alpha}, \hat{\beta}_{1}\right)$ simplifies to

$$
\begin{equation*}
\operatorname{Cov}\left(\hat{\alpha}, \hat{\beta}_{1}\right)=\frac{\sigma^{2}}{n^{2} \hat{\sigma}_{x}^{2}} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)=0 . \tag{3}
\end{equation*}
$$

