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The zero conditional mean assumption

• In the last lecture you saw that E (u|X ) = 0 is important in order for
the OLS estimator to be unbiased.

• This assumption is violated if we omit a variable from the regression
that belongs in the model.

• The bias that arise from such an omission is called omitted variable
bias.

• Comparing to the IRC experiment an omitted variable means that
there is systematic difference between the ”treatment” group and the
”control group”.
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Omitted variable bias

Omitted variable bias

The bias in the OLS estimator that occurs as a result of an omitted factor,
or variable, is called omitted variable bias. For omitted variable bias to
occur, the omitted variable ”Z” must satisfy two conditions:

• The omitted variable is correlated with the included regressor (i.e.
corr(Z ,X ) 6= 0)

• The omitted variable is a determinant of the dependent variable (i.e.
Z is part of u)
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Example: Corr(Z ,X ) 6= 0

The omitted variable (Z) is correlated with X , example

wages = β0 + β1educ + ui︸︷︷︸
δ1pinc+vi

• Parents income is likely to be correlated with education, college is
expensive and the alternative funding is loan or scholarship which is
harder to acquire.
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Example: Z is a determinant of Y

The omitted variable is a determinant of the dependent variable,

wages = β0 + β1educ + ui︸︷︷︸
δ2MS+vi

• Market situation is likely to determine wages, workers in firms that
are doing well are likely to have higher wages.
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Example: Omitted variable bias

The omitted variable is both determinant of the dependent variable, i.e.
corr(X2,Y ) 6= 0 and correlated with the included regressor

wages = β0 + β1educ + ui︸︷︷︸
δ3ability+vi

• Ability - the higher your ability the ”easier” education is for you and
the more likely you are to have high education.

• Ability - the higher your ability the better you are at your job and the
higher wages you get.
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Omitted variable bias

The direction of bias is illustrated in the the following formula:

β̂1
p−→ β1 + ρXu

σu
σX

(1)

where ρXu = corr(Xi , ui ). The formula indicates that:

• Omitted variable bias exist even when n is large.

• The larger the correlation between X and the error term the larger the
bias.

• The direction of the bias depends on whether X and u are negatively
or positively correlated.
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How to overcome omitted variable bias

1 Run a ideal randomized controlled experiment

2 Do cross tabulation

3 Include the omitted variable in the regression
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Cross tabulation

One can address omitted variable bias by splitting the data into subgroups.
For example:

College graduates High school graduates

High family income ȲHFI ,C ȲHFI ,H

Medium family income ȲMFI ,C ȲMFI ,H

Low family income ȲLFI ,C ȲLFI ,H
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Cross tabulation

• Cross tabulation only provides a difference of means analysis, but it
does not provide a useful estimate of the ceteris paribus effect.

• To quantify the partial effect on Yi on the change in one variable
(X1i ) holding the other independent variables constant we need to
include the variables we want to hold constant in the model.

• When dealing with multiple independent variables we need the
multiple linear regression model.
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Multiple linear regression model
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Multiple linear regression model

• Have used only one dependent variable for simplicity.

• However, you may want to add more than one independent variable
to the model.

• You are interested in the ceteris paribus effect of multiple parameters.
• Y is a quadratic function of X (more in chapter 8)
• You fear violation omitted variable bias.

• When you are having more than one independent variable you have a
multiple linear regression model.

Y X Other variables

Wages Education Experience, Ability
Crop Yield Fertilizer Soil quality, location (sun etc)
Test score Expenditure per student Average family income
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Multiple linear regression model

The general multiple linear regression model for the population can be
written in the as:

Yi = β0 + β1X1i + β2X2i + .....+ βkXki + ui

• Where the subscript i indicates the i th of the n observations in the
sample.

• The first subscript, 1,2,...,k, denotes the independent variable number.

• The intercept β0 is the expected value of Y when all the X’s equal
zero.

• The intercept can be thought of as the coefficient on a regressor, X0i ,
that equals zero for all i .

• The coefficient β1 is the coefficient of X1i , β2 the coefficient on X2i

etc.
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Multiple linear regression model

The average relationship between the k independent variables and the
dependent variable is given by:

E (Yi |X1i = x1,X 2i = x2, ...,Xki = xk) = β0 + β1x1 + β2x2 + ...+ βkxk

• β1 is thus the effect on Y of a unit change in X1 holding all other
independent variables constant.

• The error term includes all other factors than the X’s that influence Y.
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Example

To make it more tractable consider a model with two independent
variables. Then the population model is:

Yi = β0 + β1X1i + β2X2i + u

Example:
wagei = β0 + β1educi + β2expi + ui

wagei = β0 + β1expi + β2exp2
i + ui
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Interpretation of the coefficient

In the two variable case the predicted value is given by:

Ŷ = β̂0 + β̂1X1 + β̂2X2

Thus the predicted change in y given the changes in X1 and X2 are given
by:

∆Ŷ = β̂1∆X1 + β̂2∆X2

Thus if x2 is held fixed then:

∆Ŷ = β̂1∆X1

β̂1 measures the partial effect of X1 on Y holding the other independent
variables (here X2) fixed.
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Interpretation of the coefficient

Using data on 526 observations on wage, education and experience the
following output was obtained:

  Sunday February 1 14:48:19 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . reg wage educ exper

      Source        SS       df       MS              Number of obs =      526
           F(  2,   523) =    75.99

       Model    1612.2545     2  806.127251           Prob > F      =  0.0000
    Residual   5548.15979   523  10.6083361           R-squared     =  0.2252

           Adj R-squared =  0.2222
       Total   7160.41429   525  13.6388844           Root MSE      =   3.257

        wage       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

        educ    .6442721   .0538061    11.97   0.000     .5385695    .7499747
       exper    .0700954   .0109776     6.39   0.000     .0485297    .0916611
       _cons   -3.390539   .7665661    -4.42   0.000    -4.896466   -1.884613

Holding experience fixed another year of education is predicted to increase
your wage by 0.64 dollars.
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Interpretation of the coefficient

If we want to change more than one independent variable we simply add
the two effects.
Example:

ˆwage = −3.39 + 0.64educ + 0.07exp

If you increase education by one year and decrease experience by one year
the predicted increase in wage is 0.57 dollars. (0.64-0.07)
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Example: Smoking and birthweight

Using the data set birthweight smoking.dta you can estimate the following
regression:

ˆbirthweight = 3432.06− 253.2Smoker

If we include the number of prenatal visits:

ˆbirthweight = 3050.5− 218.8Smoker + 34.1nprevist
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Example education

The relationship between years of education of male workers and the years
of education of the parents.

  Monday February 2 20:22:28 2015   Page 4

7 . reg educ kids meduc feduc, robus

Linear regression                                      Number of obs =     1129
                                                       F(  3,  1125) =   119.43
                                                       Prob > F      =  0.0000
                                                       R-squared     =  0.2897
                                                       Root MSE      =  2.2281

                            Robust
        educ       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

        kids   -.2332289   .0470914    -4.95   0.000    -.3256257   -.1408321
       meduc    .1775282   .0220452     8.05   0.000     .1342739    .2207825
       feduc    .2098686   .0259383     8.09   0.000     .1589756    .2607615
       _cons    9.670457   .2974098    32.52   0.000     9.086917      10.254

8 . reg educ meduc feduc, robust

Linear regression                                      Number of obs =     1129
                                                       F(  2,  1126) =   159.83
                                                       Prob > F      =  0.0000
                                                       R-squared     =  0.2689
                                                       Root MSE      =  2.2595

                            Robust
        educ       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       meduc    .1844065   .0223369     8.26   0.000     .1405798    .2282332
       feduc    .2208784   .0259207     8.52   0.000     .1700201    .2717368
       _cons    8.860898   .2352065    37.67   0.000     8.399405     9.32239

9 . 

• Interpret the coefficient on mother’s education.

• What is the predicted difference in education for a person where both
parents have 12 years of education and a person where both parents
have 16 years of education?
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Example education and siblings

From stata:

  Monday February 2 20:29:26 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . display _cons+_b[meduc]*12+_b[feduc]*12
5.8634189

2 . display _cons+_b[meduc]*16+_b[feduc]*16
7.4845585

3 . 
4 . display 7.484-5.863

1.621

5 . 
6 . *or
7 . 
8 . display _b[meduc]*4+_b[feduc]*4

1.6211396

Or by hand:

0.1844 ∗ (16− 12) + 0.2209 ∗ (16− 12) = 1.6212
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Multiple linear regression model

Advantages of the MLRM over the SLRM:

• By adding more independent variables (control variables) we can
explicitly control for other factors affecting y.

• More likely that the zero conditional mean assumption holds and thus
more likely that we are able to infer causality.

• By controlling for more factors, we can explain more of the variation
in y, thus better predictions.

• Can incorporate more general functional forms.
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Comparing estimates from simple and multiple regression

What is the return to education? Simple regression:

  Monday February 2 20:38:46 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . reg wage educ, robust

Linear regression                                      Number of obs =      935
                                                       F(  1,   933) =    95.65
                                                       Prob > F      =  0.0000
                                                       R-squared     =  0.1070
                                                       Root MSE      =  382.32

                            Robust
        wage       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

        educ    60.21428   6.156956     9.78   0.000      48.1312    72.29737
       _cons    146.9524   80.26953     1.83   0.067    -10.57731    304.4822

Can we give this regression a causal interpretation? What happens if we
include IQ in the regression?

forth
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Comparing estimates from simple and multiple regression

Call the simple regression of Y on X1 (think of regressing wage on
education)

Ỹ = β̃0 + β̃1X1

while the true population model is:

Yi = β0 + β1X1 + β2X2 + ui

The relationship between β̃1 and β1 is:

β̃1 = β1 + β2δ̃1

where δ̃1 comes from the regression X̂2 = δ̃0 + δ̃1X1

25 / 60



Comparing estimates from simple and multiple regression

Thus the bias that arise from the omitted variable (in the model with two
independent variables) is given by β2δ̃1 and the direction of the bias can
be summarized by the following table:

corr(x1, x2) > 0 corr(x1, x2) < 0

β2 > 0 Positive bias Negative bias

β2 < 0 Negative bias Positive bias
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Comparing estimates from simple and multiple regression

• Deriving the sign of omitted variable bias when there are more than
two independent variables in the model is more difficult.

• Note that correlation between a single explanatory variable and the
error generally results in all OLS estimators being biased.

• Suppose the true population model is:

Y = β0 + β1X1 + β2X2 + β3X3 + u

• But we estimate
Ỹ = β̃0 + β̃1X1 + β̃2X2

• If Corr(X1,X3) 6= 0 while Corr(X2,X3) = 0 β̃2 will also be biased
unless corr(X1,X2) = 0.
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Comparing estimates from simple and multiple regression

wage = β0 + β1educ + β2exper + β3abil + u

• People with higher ability tend to have higher education

• People with higher education tend to have less experience

• Even if we assume that ability and experience are uncorrelated β2 is
biased.

• We cannot conclude the direction of bias without further assumptions
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Comparing estimates from simple and multiple regression

  Monday February 2 20:47:15 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . reg wage educ IQ, robust

Linear regression                                      Number of obs =      935
                                                       F(  2,   932) =    64.47
                                                       Prob > F      =  0.0000
                                                       R-squared     =  0.1339
                                                       Root MSE      =  376.73

                            Robust
        wage       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

        educ    42.05762   6.810074     6.18   0.000     28.69276    55.42247
          IQ    5.137958   .9266458     5.54   0.000     3.319404    6.956512
       _cons   -128.8899   93.09396    -1.38   0.167    -311.5879    53.80818

2 . reg educ IQ, robust

Linear regression                                      Number of obs =      935
                                                       F(  1,   933) =   342.94
                                                       Prob > F      =  0.0000
                                                       R-squared     =  0.2659
                                                       Root MSE      =   1.883

                            Robust
        educ       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

          IQ    .0752564   .0040638    18.52   0.000     .0672811    .0832317
       _cons      5.8463    .407318    14.35   0.000     5.046934    6.645665

  Monday February 2 20:58:01 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

                            Robust
          IQ       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

        educ    3.533829   .1839282    19.21   0.000     3.172868     3.89479
       _cons    53.68715   2.545285    21.09   0.000     48.69201     58.6823

β̃1 = 60.214 ≈ 42.047 + 3.533 ∗ 5.137

back
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Causation

• Regression analysis can refute a causal relationship, since correlation
is necessary for causation.

• But cannot confirm or discover a causal relationship by statistical
analysis alone.

• The true population parameter measures the ceteris paribus effect
which holds all other (relevant) factors equal.

• However, it is rarely possible to literally hold all else equal, but one
way is to take advantage of ”natural experiments” or
”quasi-experiments”.

• One way to deal with unobserved factors is to use an instrument.
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Estimation of MLRM
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Assumptions of the MLRM

1 Random sampling

2 Large outliers are unlikely

3 Zero conditional mean, i.e the error u has an expected value of zero
given any value of the independent variables

E (u|X1, x2, ....Xk) = 0

4 (There is sampling variation in X) and there are no exact linear
relationships among the independent variables.

5 (The model is linear in parameters)

Under these assumptions the OLS estimators are unbiased estimators of
the population parameters. In addition there is the homoskedasticity
assumption which is necessary for OLS to be BLUE.
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No exact linear relationships

Perfect collinearity

A situation in which one of the regressors is an exact linear function of the
other regressors.

• This is required to be able to compute the estimators.

• The variables can be correlated, but not perfectly correlated.

• Typically perfect collinearity arise because of specification mistakes.
• Mistakenly put in the same variable measured in different units
• The dummy variable trap: Including the intercept plus a binary variable

for each group.
• Sample size is to small compared to parameters (need at least k+1

observations to estimate k+1 parameters)
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No perfect collinearity

Solving the two 1oc for the model with two independent variables gives:

β̂1 =
σ̂2X2

σ̂Y ,X1 − σ̂Y ,X2 σ̂X1,X2

σ̂2X1
σ̂2X2
− σ̂X1,X2

where σ̂2Xj
(j = 1, 2), σ̂2Y ,Xj

and σ̂2X1,X2
are empirical variances and

covariances. Thus we require that:

σ̂2X1
σ̂2X2
− σ̂X1,X2 = σ̂2X1

σ̂2X2
(1− r2X1,X2

) 6= 0

Thus must have that σ̂2X1
> 0, σ̂2X2

> 0 and r2X1,X2
< 1. Thus the sample

correlation coefficient between X1 and X2 cannot be one or minus one.
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OLS estimation of MLRM
The procedure for obtaining the estimates is the same as with one
regressor. Choose the estimate that minimize the sum of squared errors. If
k=2 then minimize

S(β0, β1, β2) =
n∑

i=1

(Yi − β0 − β1X1i − β2X2i )
2

• The estimates β̂0, β̂1 and β̂2 are chosen simultaneously to make the
squared error as small as possible.

• The i subscript is for the observation number, the second subscript is
for the variable number.

• βj would thus be the coefficient on variable number j.

• For even moderately sized n and k solving the first order conditions by
hand is tedious.

• Computer software can do the calculation as long as we assume the
FOCs can be solved uniquely for the β̂j ’s.
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OLS estimation of MLRM

The solution to the FOCs give you:

• The ordinary least square estimators (β̂0, β̂1, β̂2) of the true
population coefficients (β0, β1, β2).

• The predicted value Ŷ of Yi given X1i and X2i .

• The OLS residuals ûi = Yi − Ŷi .
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OLS estimation of MLRM

The OLS fitted values and residuals have the same important properties as
in the simple linear regression:

• The sample average of the residuals is zero and so Ȳ = ¯̂Y

• The sample covariance between each independent variable and the
OLS residuals is zero. Consequently, the sample covariance between
the OLS fitted values and the OLS residuals is zero.

• The point (X̄1, X̄2, ..., X̄k , Ȳ ) is always on the OLS regression line.
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Properties of the MLRM OLS estimator

• Under the OLS assumptions the OLS estimators of MLRM are
unbiased and consistent estimators of the unknown population
coefficients.

E (β̂j) = βj , j = 0, 1, 2, ...k

• The homoskedasticity only variance is:

var(β̂1) =
σ2∑n

i=1(Xij − X̄j)2(1− R2
j )
, j = 0, 1, 2, ..., k ,

• Where R2
j is the R-squared from regressing xj on all other

independent variables.

• In large samples the joint samling distribution of β̂0, β̂1, ...β̂k is well
approximated by a multivariate normal distribution.
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Properties of the MLRM OLS estimator

• Under the OLS assumptions, including homoskedasticity, the OLS
estimators β̂j are the best linear unbiased estimators of the population
parameter βj .

• Thus when the standard set of assumptions holds and we are
presented with another estimator that are both linear and unbiased
then we know that the variance of this estimator is at least as large as
the OLS variance.

• Under heteroskedasticity the OLS estimators are not necessarily the
one with the smallest variance.

39 / 60



Variance of the OLS estimator

Variance:

var(β̂1) =
σ2∑n

i=1(Xij − X̄j)2(1− R2
j )
, j = 0, 1, 2, ..., k ,

• As in the SLRM the OLS variance of β̂1 depend on the variance of
the error term and the sample variance in the independent variable.

• In addition it depends on the linear relationship among the
independent variables R2

j
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Variance of the OLS estimator

Figure: From Wooldrigde 2009
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Imperfect collinearity

• Occurs when two or more of the regressors are highly correlated (but
not perfectly correlated).

• High correlation makes it hard to estimate the effect of the one
variable holding the other constant.

• For the model with two independent variables and homoskedastic
errors:

σ2
β̂1

=
1

n

(
1

1− ρ2X1,X2

)
σ2u
σ2X1

• The two variable case illustrates that the higher the correlation
between X1 and X2 the higher the variance of β̂1.

• Thus, when multiple regressors are imperfectly collinear, the
coefficients on one or more of these regressors will be imprecisely
estimated.
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Overspecification

• The OVB problem may lead you to think that you should include all
variables you have in your regression.

• If an explanatory variable in a regresion model has a zero population
parameter in estimating an equation by OLS we call that variable
irrelevant.

• An irrelevant variable has no partial effect on y.

• A model that includes irrelevant variables is called an overspecified
model.

• An overspecified model gives unbiased estimates, but it can have
undesirable effects on the variances of the OLS.

• Omitted variable bias occurs from excluding a relevant variable, thus
the model can be said to be underspecified.
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Controlling for too many factors

• In a similar way we can over control for factors.

• In some cases, it makes no sense to hold some factors fixed, precisely
because they should be allowed to change.

• If you are interested in the effect of beer taxes on traffic fatalities it
makes no sense to estimate:

fatalities = β0 + β1tax + β2beercons + ....

• As you will measure the effect of tax holding beer consumption fixed,
which is not particularly interesting unless you want to test for some
indirect effect of beer taxes.
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Consistency

Clive W. J. Granger (Nobel Prize-winner) once said:

If you can’t get it right as n goes to infinity you shouldn’t be in
this business.

• Which indicate that if your estimator of a particular population
parameter is not consistent then you are wasting your time.

• Consistency involves a thought experiment about what would happen
as the sample size gets large. If obtaining more and more data does
not generally get us cloesr to the parameter of interest, then we are
using a poor estimation procedure.

• The OLS estimators are inconsistent if the error is correlated with any
of the independent variables.

45 / 60



Goodness of fit

• SST, SSE and SSR is defined exactly as in the simple regression case.

• Which means that the R2 is defined the same as in the regression
with one regressor.

• However R2 never decrease and typically increase when you add
another regressor as you explain at least as much as with one
regressor.

• This means that an increased R2 not necessarily means that the
added variable improves the fit of the model.
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The adjusted R-squared

• The adjusted R-squared is introduced in MLRM to compensate for
the increasing R-squared.

• The adjusted R-squared includes a ”penalty” for including another
regressor thus R̄2 does not necessarily increase when you add another
regressor.

R̄2 = 1−
(

n − 1

n − k − 1

)
SSR

TSS
(2)
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Properties of R̄2

• Since n−1
n−k−1 > 1 R2 > R̄2

• Adding a variable may decrease or increase R̄ depending on whether
the increase in explanation is large enough to make up for the penalty

• R̄2 can be negative.
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Note on caution about R2/R̄2

• The goal of regression is not to maximize R̄2 (or R2) but to estimate
the causal effect.

• R2 is simply an estimate of how much variation in y is explained by
the independent variables in the population.

• Although a low R2 means that we have not accounted for several
factors that affect Y, this does not mean that these factors in u are
correlated with the independent variables.

• Whether to include a variable should thus be based on whether it
improves the estimate rather than whether it increase the fraction of
variance we can explain.

• A low R2 does imply that the error variance is large relative to the
variance of Y, which means we may have a hard time precisely
estimating the βj .

• A large error variance can be offset by a large sample size, with
enough data one can precisely estimate the partial effects even when
there are many unobserved factors.
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The standard error of the regression

Remember that the standard error of the regression (SER) estimates the
standard deviation of the error term ui :

SER = sû =
√

s2û where s2û =
1

n − k − 1

n∑
i=1

û2
i =

SSR

n − k − 1
(3)

The only difference from the SLRM is that the number of regressors k is
included in the formula.
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Heteroskedasticity and OVB

• Pure heteroskedasticity is caused by the error term of a correctly
specified equation.

• Heteroskedasticity is likely to occur in data sets in which there is a
wide disparity between the largest and smallest observed values.

• Impure heteroskedasticity is heteroskedasticity caused by an error in
specification, such as an omitted variable.
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Effects of data scaling on OLS

Consider an example

ˆbwght = β̂0 + β̂1cigs + β̂2faminc

where:

• bwght = child birth weights, in ounces.

• cigs = number og cigarettes smoked by the mother while pregnant,
per day

• faminc = annual family income, in thousands of dollars
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Effects of data scaling on OLS
  Wednesday February 4 14:37:02 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . reg bwght cigs faminc

      Source        SS       df       MS              Number of obs =     1388
           F(  2,  1385) =    21.27

       Model   17126.2088     2  8563.10442           Prob > F      =  0.0000
    Residual   557485.511  1385  402.516614           R-squared     =  0.0298

           Adj R-squared =  0.0284
       Total    574611.72  1387  414.283864           Root MSE      =  20.063

       bwght       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

        cigs   -.4634075   .0915768    -5.06   0.000    -.6430518   -.2837633
      faminc    .0927647   .0291879     3.18   0.002     .0355075    .1500219
       _cons    116.9741   1.048984   111.51   0.000     114.9164    119.0319
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Effects of data scaling on OLS

Alternatively you can specify the model in pounds so that
bwghtlbs = bwght/16 Then:

ˆbwght/16 = β̂0/16 + (β̂1/16) ∗ cigs + (β̂1/16)faminc

• So it follows from previous lectures that each new coefficient will be
the corresponding old coefficient divided by 16.

• Once the effects are transformed into the same units we get exactly
the same answer, regardless of how the dependent variable is
measured.

• It has no effect on the statistical significance. The t-statistic is
independent, but the standard errors are scaled with the coefficient.

54 / 60



Effects of data scaling on OLS

Alternatively one could measure cigs in cigarette packs instead. Then:

ˆbwght = β̂0+20β̂1(cigs/20)+β̂2faminc ˆbwght = β̂0+20β̂1(packs)+β̂2faminc

The only effect is that the coefficient on packs is 20 times higher than the
coefficient on cigarettes, and so will the standard error be.
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Effects of data scaling on OLS
The below figure show the three regressions including the goodness of fit
measures.

• The R2 from the three regressions are the same (as they should be)
• The SSR and SER are different in the second specification.
• Actually SSR is 256 (162) larger in one and three than two.
• And SER is 16 times smaller in two than in one and three.
• Because SSR is measured in squared units of the dependent variable,

while SER is measured in units of the dependent variable.
• Thus we have not reduced the error by chaning the units.
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Measuring effects in standard deviations

• Sometimes a key variable is measured on a scale that is difficult to
interpret.

• An example is test score in labor economists wage equations which
can be arbitrarily scored and hard to interpret.

• Then it can make sense to ask what happens if test score is one
standard deviation higher.

• A variable is standardized by subtracting off its mean and dividing by
the standard deviation.

• You can make a regression where the scale of htm regressors are
irrelevant by standardizing all the variables in the regression.
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Dummy variables in MLRM

• The multiple regression model allows for using several dummy
independent variables in the same equation.

• In the multiple regression model a dummy variable gives an intercept
shift between the groups.

• If the regression model is to have different intercepts for, say, g
groups or categories, we need to include g-1 dummy variables in the
model along with an intercept.

• The intercept for the base group is the overall intercept in the model

• The dummy variable coefficient for a particular group represents the
estimated difference in intercepts between that group and the base
group.

• An alternative is to suppress the intercept, but it makes it more
cumbersome to test for differences relative to a base group.
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Dummy variables in MLRM
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Dummy variables in MLRM

• Variables with are ordinal can either be entered to the equation in its
form or you can create a dummy variable for each of the values.

• Creating a dummy variable for each value allow the movement
between each level to be different so it is more flexible than simply
putting the variable in the model.

• F.ex you can have a credit rate ranking between 0 and 4. Then you
can include 4 dummy variables in your regression.

60 / 60


	Omitted variable bias
	Multiple linear regression model
	Estimation
	Properties of the OLS estimator
	Measures of fit

