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This lecture

This lecture will cover:

• An introduction to econometrics.

• A repetition of the probability theory necessary for this course.
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This course

After the end of this course you should be able to:

• Conduct empirical analysis.
• Be able to forecast using time series data.
• Be able to estimate causal effects using observational data.
• Be able to explain the theoretical background of the standard methods

used for conducting empirical analysis.
• Perform statistical tests.

• Interpret and critically evaluate the outcomes of empirical analysis.
• Read and understand the regression output from Stata.
• Are the underlying assumptions of the regression satisfied?
• Are the output externally and internally valid?

• Be able to read and understand (and potentially criticize) papers that
make use of the concepts and methods introduced in this course.
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What is econometrics?
Econometrics is a ”combined discipline”
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What is econometrics?

Definition: No clear agreement, S&W use: ”Econometrics is the art of
using economic theory and statistical techniques to analyze economic
data.” Which includes:

• Testing economic theories.

• Fitting mathematical economic models to real-world data.

• Using historical data to give policy recommendations.

• Using data to forecast future values of economic variables.

• Estimating causal effects.
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Our goal with econometrics

• Economic theory suggests important relationships between factors,
but tends to be satisfied with specifying the sign of the correlation.

• In econometrics we will use tools in order to try to estimate the
quantitative magnitude of these relationships and establish causal
effects.
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Steps in an econometric analysis

1 Formulate en economic model - formulate a theoretical model, or use
economic theory and economic reasoning to informally formulate a
relationship between the variables of interest.

2 From the economic model to an econometric model - specify the
functional form of the relationship (linear, log-linear...) General:
y = β0 +β1x +u. We call the left side variable the dependent variable
and the right side independent variable or explanatory variable.

3 Collect data for the problem at hand

4 Estimate the econometric model

5 Use the estimates for statistical inference

In this course we will focus on step four and five.
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Data types

Data types:

• Cross-sectional: data on different entities for a single time period.

• Time series: data for a single entity collected at multiple time periods.

• Panel data: data for multiple entities in which each entity is observed
at two or more time periods.

• (Repeated cross section: A collection of cross-sectional data sets,
where each cross-sectional data set corresponds to a different time
period).

Data sources:

• Experiment

• Observational data, administrative records or surveys
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Denotation

• In general we denote a variable with the subscript i (ex Xi ) where i is
either the time period or the entity number depending on the data
type.

• When we need to be precise about using time series data we use the
subscript t instead of i.

• When we use panel data we use both subscripts (Yit ,Xit) where the
first subscript is the entity and the second the time period.

9 / 30



Step 4: Estimate the econometric model

Choose an estimator to produce estimates of the relationship we are
interested in.

An estimator a mathematical procedure (rule) used on sample data. The
estimate is the actual value taken by the estimator in a specific sample.

• Linear regression with single or multiple regressors (ch 4-6)

• Non-linear regression functions (ch 8)

• Regression with panel data (ch 10)

• Regressions with binary dependent variable (ch 11)

• Instrumental variable regression (ch 12)
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Quality of the estimate

You will also learn to asses the quality of the estimate. Is it:

• Unbiased

• Consistent

• Efficient
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Step 5: Statistical inference

Use the estimates to:

• Draw conclusions about the size of economic parameters, ex demand
elasticities

• Predict economic outcomes, macroeconomic forecasting

• Test hypotheses, do class size matter for student learning

• Evaluate policy, will the new limit on toll free goods harm Norwegian
firms?

But are the estimates reliable?

12 / 30



Review of probability
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References to Lecture 1

• Stock and Watson (SW) Chapter 1 and 2

A pre-requisite for this course is an introductory statistics course. Thus
this is considered repetition. Thus consult your statistics textbook if you
need more information than provide in this lecture and the textbook.
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Scatterplot
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Random variables and probability distribution

• A random variable attaches a value to each possible outcome of a
random process.

• Outcomes are the mutually exclusive results of the random process
and the set of all potential outcomes is called the sample space.

• The probability of an outcome is the proportion of the time that the
outcome occurs in the long run.

• The (marginal) probability distribution is the set of all possible
outcomes and their associated probabilities.

• The cumulative probability distribution is the probability that the
random variable is less than or equal to a particular value.
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Example - Coin toss

Consider the random process of flipping two coins:

• Four combinations: two heads, first is head and second is tail, first is
tail and second is heads, two tails.

• If variable of interest is number of heads the potential outcomes are
[0,1,2]

Number of heads 0 1 2

Probability 0.25 0.5 0.25
Cumulative probability 0.25 0.75 1
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Joint and conditional distribution

• The joint distribution is the probability that two (or more) random
variables take on certain values simultaneously.

• Conditional distribution is the distribution of a random variable Y
conditional on another random variable X taking on a specific value.

Pr(Y = y |X = x) =
Pr(X = x ,Y = y)

Pr(X = x)

Maybe more commonly known as: Pr(A|B) = Pr(A∩B)
Pr(B)
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Distributions
The most common probability distributions in econometrics is:

• Normal distribution. Properties:
• Bell-shaped with (µ) and variance σ2, written as: N(µ, σ2)
• Symmetric around the mean
• 95% of its probability between µ+ /− 1.96σ.
• Note: A sum of n normally distributed random variables is itself

normally distributed.

• Standard normal distribution. Properties:
• N(0,1)
• Typically the variable is denoted Z and the standard normal cumulative

distribution function is denoted with φ and PR(Z ≤ c) = φ(c)
• A normal distributed variable can be standardized using: Z = X−µx

σx

• Chi-square distribution is used for comparing estimated variance
values to the values based on theoretical assumptions.

• Student t distribution - used to calculate confidence intervals (using
the critical t-value)

• The F distribution we will use to compute F-tests
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Bernoulli distribution

• A Bernoulli random variable is a binary random variable, which means
that the outcome is either zero or one

• The Bernoulli distribution of variable G is then:

G =

{
1 with probability p

0 with probability (1− p)

• The simplicity of the Bernoulli distribution makes the variance and
mean simple to calculate
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Measures of a distribution

• Mean = expected value = E (Y ) = µY

• Variance is the measure of the square spread of the distribution

• Standard deviation is the square root of the variance

• Skewness - measures the asymmetry of a distribution

• Kurtosis - measures the mass in tails, i.e. probability of large values

• Covariance is the measure of the linear association between two
random variables

corr(X ,Z ) = cov(X ,Z)√
var(X )var(Z)
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Expectations

If X is a discrete random variable, the expectation is:

µx = E (X ) =
k∑

i=1

xi fX (xi ) and Var(X ) = E (X 2)− µ2
x

Rules for the expectation:

1 E (a) = a, for a constant a

2 E (aX ) = aE (X ) for a constant a

3 E (X + Y ) = E (X ) + E (Y )

Rules for variance:

1 Var(a) = 0, for a constant a

2 Var(aX ) = a2Var(X ) = a2σ2
X for a constant a

3 Var(aX + bY ) = a2σ2
x + 2abσxy + b2σ2

y

See key concept 2.3 for more details.
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Random sampling

• Simple random sampling: n objects (Y1,Y2, ....Yn) are selected at
random from a population. At random means that each member of
the population is equally likely to be included in the sample.

• The observations are independently and identically distributed (i.i.d)
• Same marginal distribution
• The value of Y1 provides no information about the value of Y2
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Sample average

Suppose that the observations Y1,Y2, ....Yn are i.i.d. with mean µy and
variance σ2

y then the sample average is:

Ȳ =
1

n
(Y1 + Y2 + ....Yn) =

1

n

n∑
i=1

Yi

which is itself a random variable with a probability distribution called the
sampling distribution. Furthermore:

E (Ȳ ) =
1

n

n∑
i=1

E (Yi ) = µy and Var(Ȳ ) = var(
1

n

n∑
i=1

Yi ) =
σ2
y

n
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Large sample approximations

• Unless the distribution of Y is normal the exact sampling distribution
of the sample average (Ȳ ) is complicated

• However, when the sample size is large we can impose the central
limit theorem and the law of large numbers
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The law of large numbers

Law of large numbers

Under general conditions, the sample average will be close to the
population mean with very high probability when the sample is large.

I.e. when n is large Ȳ is close to µy with high probability.
When a large number of random variables with the same mean are
averaged together, the large values balance the small values and the
sample averages is close to the common mean.
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Central limit theorem

Central limit theorem

Under general conditions, the sampling distribution of the standardized
sample average is well approximated by a standard normal distribution
when the sample size is large.

When n is large the distribution Ȳ of converges to the normal distribution.
That is: Ȳ is approximately N(µy , σ

2
Ȳ

)
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Example: CLT
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Properties of the sample average

• An estimator is consistent if the probability that it falls within an
interval of the true population value tends to one as the sample size
increases.

• The law of large numbers specifies the conditions under which the
sample average is a consistent estimate of the population mean.

• We say that Ȳ converges in probability to µy or that Ȳ is consistent
for µy .
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Sampling distribution of Ȳ

For small sample sizes the distribution of Ȳ is complicated but if n is large
then:

• As n increases the distribution of Ȳ becomes more tightly centered
around µy (The law of large numbers)

• The distribution of Ȳ − µy becomes normal (The central limit
theorem)
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