ECON4150 - Introductory Econometrics

Lecture 13: Internal and external validity

Monique de Haan (moniqued@econ.uio.no)

Stock and Watson Chapter 9

- Definitions of internal and external validity
- Threats to internal validity
 - Omitted variables
 - Functional form misspecification
 - Measurement error
 - Sample selection
 - Simultaneous causality
 - Heteroskedasticity and/or correlated error terms
- Threats to external validity
 - Differences in populations
 - Differences in settings
- Internal and external validity when regression analysis is used for forecasting

Correlation does not imply causation!!

Correlation does not imply causation!!

Correlation does not imply causation!!

Internal validity: the statistical inferences about causal effects are valid for the population and setting being studied.

External validity: the statistical inferences can be generalized from the population and setting studied to other populations and settings

Suppose we are interested in the causal effect of X_1 on Y and we estimate the following regression model

$$Y_i = \beta_0 + \beta_1 X_{1i} + u_i$$

Internal validity has two components:

1 The OLS estimator of β_1 is unbiased and consistent

1
$$E\left[\widehat{\beta}_{1}\right] = \beta_{1}$$

2 $\underset{n \to \infty}{\text{plim}}\left(\widehat{\beta}_{1}\right) = \beta_{1}$

2 Hypothesis tests should have the desired significance level and confidence intervals should have the desired confidence level. . regress ln_earnings education

Source	SS	df	MS	N	umber of obs =	602
Model Residual	30.9485912 166.015196	1 30 600 .:	0.9485912 276691993		F(1, 800) Prob > F R-squared	= 0.0000 = 0.1571
Total	196.963787	601 .:	327726767		Root MSE	= .52602
ln_earnings	Coef.	Std. Err.	t	P> t	[95% Conf. I	nterval]
education _cons	.0932827 1.622094	.0088203	2 10.58 5 13.05	0.000 0.000	.0759605 1.377968	.110605 1.866221

- Is this regression internally valid?
- Is the causal effect of an additional year of education on average hourly earnings equal to 9.3%?
- If we increase the education of a random sample of individuals in the U.S. by one year does this increase their average hourly earnings by 9.3%?

Threats to internal validity

The 3 assumptions of an OLS regression model:

1
$$E(u_i|X_{1i}) = 0$$

- **2** $(X_{1i}, Y_i), i = 1, ... N$ are independently and identically distributed
- 3 Big outliers are unlikely.

Threats to internal validity:

- Omitted variables
- Functional form misspecification
- Measurement error
- · Sample selection
- Simultaneous causality
- · Heteroskedasticity and/or correlated error terms

The first 5 are violations of assumption (1) the last one is a violation of assumption (2).

Omitted variables

- Suppose we want to estimate the causal effect of X_{1i} on Y_i.
- The true population regression model is

$$Y_i = \beta_0 + \beta_1 X_{1i} + \underbrace{\beta_2 X_{2i} + w_i}_{u_i}$$
 with $E[w_i | X_{1i}, X_{2i}] = 0$

· But we estimate the following model

$$Y_i = \beta_0 + \beta_1 X_{1i} + u_i$$

We have that

$$\begin{aligned} \underset{n \to \infty}{\text{plim}} \left(\widehat{\beta}_{1} \right) &= \frac{Cov(X_{1i}, Y_{i})}{Var(X_{1i})} &= \beta_{1} + \frac{Cov(X_{1i}, u_{i})}{Var(X_{1i})} \\ &= \beta_{1} + \frac{Cov(X_{1i}, \beta_{2}X_{2i} + w_{i})}{Var(X_{1i})} \\ &= \beta_{1} + \frac{Cov(X_{1i}, \beta_{2}X_{2i}) + Cov(X_{1i}, w_{i})}{Var(X_{1i})} \\ &= \beta_{1} + \beta_{2} \frac{Cov(X_{1i}, X_{2i})}{Var(X_{1i})} \end{aligned}$$

$$\underset{n \to \infty}{\text{plim}} \left(\widehat{\beta}_1 \right) = \beta_1 + \beta_2 \frac{\text{Cov} \left(X_{1i}, X_{2i} \right)}{\text{Var} \left(X_{1i} \right)}$$

 An omitted variable X_{2i} leads to an inconsistent OLS estimate of the causal effect of X_{1i} if

1 The omitted variable X_{2i} is a determinant of the dependent variable Y_i

β₂ ≠ 0

- 2 The omitted variable X_{2i} is correlated with the regressor of interest X_{1i}
 - $Cov(X_{1i}, X_{2i}) \neq 0$
 - Only if there exists 1 or more variables that satisfy both conditions
 - the OLS regression is not internally valid
 - The OLS estimator does not provide a unbiased an consistent estimate of the causal effect of *X*_{1*i*}

Omitted variables

- Are there important omitted variables in the returns to education regression in slide 7?
- Important and often discussed omitted variable is ability

Ability is likely a determinant of earnings
 Ability is likely correlated with education

Since we expect β₂ > 0 and Cov (X_{1i}, X_{2i}) > 0

$$\underset{n \to \infty}{\text{plim}} \left(\widehat{\beta}_{1}\right) = \beta_{1} + \beta_{2} \frac{\text{Cov}\left(X_{1i}, X_{2i}\right)}{\text{Var}\left(X_{1i}\right)} > \beta_{1}$$

- Omitting ability from the regression will lead OLS to overestimate the effect of educaion on earnings!
- But can we include ability as independent variable in the regression?

Functional form misspecification

Suppose that the true population regression model is

$$Y_i = \beta_0 + \beta_1 X_{1i} + \underbrace{\beta_2 X_{1i}^2 + w_i}_{u_i}$$
 with $E[w_i | X_{1i}] = 0$

But we estimate the following model

$$Y_i = \beta_0 + \beta_1 X_{1i} + u_i$$

We have that

$$\underset{n \to \infty}{\text{plim}} \left(\widehat{\beta}_{1} \right) = \beta_{1} + \frac{Cov(X_{1i}, u_{i})}{Var(X_{1i})}$$

$$= \beta_{1} + \frac{Cov(X_{1i}, \beta_{2}X_{1i}^{2} + w_{i})}{Var(X_{1i})}$$

$$= \beta_{1} + \beta_{2} \frac{Cov(X_{1i}, X_{1i}^{2})}{Var(X_{1i})}$$

- if $\beta_2 \neq 0$, the simple linear regression model is not internally valid
 - Cov $(X_{1i}, X_{1i}^2) \neq 0$ by definition.

Functional form misspecification

Should we include education squared in the regression model?

		-		
	rearess	In	earnings	education
•	T C J T C D D		_correlation	caacacion

Source	SS	df	MS	N	umber of obs =	602
Model Residual	30.9485912 166.015196	1 600	30.9485912 .276691993		F(1, 600) Prob > F R-squared	$= 111.85 \\= 0.0000 \\= 0.1571 \\= 0.1571$
Total	196.963787	601	.327726767		Root MSE	= .52602
ln_earnings	Coef.	Std. Er	r. t	P> t	[95% Conf. I	interval]
education _cons	.0932827 1.622094	.00882	02 10.58 55 13.05	0.000 0.000	.0759605 1.377968	.110605 1.866221

. regress ln_earnings education education2

Source	SS	df	MS	Number of obs =	602
Model	32.3114037	2	16.1557019	F(2, 599) = Prob > F =	0.0000
Total	196.963787	601	.327726767	R-squared = Adj R-squared = Root MSE =	0.1613

ln_earnings	Coef. Std. Err.		t P> t		[95% Conf. Interval]		
education	0583157	.0686496	-0.85	0.396	1931388	.0765074	
education2	.0054138	.0024314	2.23	0.026	.0006387	.0101889	
_cons	2.651301	.4785439	5.54	0.000	1.711473	3.591129	

Functional form misspecification

• For major part of the support, linear and quadratic models are very similar.

There are different types of measurement error

1 Measurement error in the independent variable X

- Classical measurement error
- Measurement error correlated with X
- Both types of measurement error in X are a violation of internal validity
- 2 Measurement error in the dependent variable Y
 - Less problematic than measurement error in X
 - Usually not a violation of internal validity
 - Leads to less precise estimates

Suppose we have the following population regression model

$$Y_i = \beta_0 + \beta_1 X_{1i} + u_i$$
 with $E[u_i | X_{1i}] = 0$

 Suppose that we do not observe X_{1i} but we observe X_{1i} a noisy measure of X_{1i}

$$\widetilde{X}_{1i} = X_{1i} + \omega_i$$

• Adding and subtracting $\beta_1 \widetilde{X}_{1i}$ gives

$$Y_i = \beta_0 + \beta_1 \widetilde{X}_{1i} + \beta_1 (X_{1i} - \widetilde{X}_{1i}) + u_i$$
$$= \beta_0 + \beta_1 \widetilde{X}_{1i} - \beta_1 \omega_i + u_i$$

Classical measurement error:

 $Cov(X_{1i}, \omega_i) = 0, \quad Cov(\omega_i, u_i) = 0, \quad E[\omega_i] = 0, \quad Var(\omega_i) = \sigma_{\omega}^2$

 For example: measurement error due to someone making random mistakes when imputing data in a database.

Suppose we estimate the following regression model

$$Y_i = \beta_0 + \beta_1 \widetilde{X}_{1i} + e_i$$
 with $e_i = -\beta_1 \omega_i + u_i$

• With classical measurement error the OLS estimate of β_1 is inconsistent.

$$\underset{n\longrightarrow\infty}{\textit{plim}}\left(\widehat{\beta}_{1}\right) = \beta_{1} + \frac{\textit{Cov}(\widetilde{X}_{1i}, e_{i})}{\textit{Var}(\widetilde{X}_{1i})}$$

• Substituting $\widetilde{X}_{1i} = X_{1i} + \omega_i$ and $e_i = -\beta_1 \omega_i + u_i$ gives

$$\underset{n \to \infty}{\text{plim}} \left(\widehat{\beta}_1 \right) = \beta_1 + \frac{Cov(X_{1i} + \omega_i, -\beta_1 \omega_i + u_i)}{Var(X_{1i} + \omega_i)}$$

From the previous slide we have:

$$\underset{n \to \infty}{\text{plim}} \left(\widehat{\beta}_{1} \right) = \beta_{1} + \frac{Cov(X_{1i} + \omega_{i}, -\beta_{1}\omega_{i} + u_{i})}{Var(X_{1i} + \omega_{i})}$$

• Using that $Cov(X_{1i}, \omega_i) = Cov(X_{1i}, u_i) = Cov(\omega_i, u_i) = 0$

$$\begin{array}{lll} \underset{n \to \infty}{\textit{plim}} \left(\widehat{\beta}_{1} \right) & = & \beta_{1} - \frac{\beta_{1} Cov(\omega_{i}, \omega_{i})}{Var(X_{1i}) + Var(\omega_{i})} \\ \\ & = & \beta_{1} \left(1 - \frac{Var(\omega_{i})}{Var(X_{1i}) + Var(\omega_{i})} \right) \\ \\ & = & \beta_{1} \left(\frac{Var(X_{1i}) + Var(\omega_{i})}{Var(X_{1i}) + Var(\omega_{i})} - \frac{Var(\omega_{i})}{Var(X_{1i}) + Var(\omega_{i})} \right) \\ \\ & = & \beta_{1} \left(\frac{Var(X_{1i})}{Var(X_{1i}) + \sigma_{\omega}^{2}} \right) \end{array}$$

• With classical measurement error $\hat{\beta}_1$ is biased towards 0!

```
1 . program simulate1, rclass
    1. guietly {
    2.
               drop _all
    3.
             set obs 10000
            gen x1 = rnormal()
gen x1_observed=x1+rnormal()
gen y=5+10*x1+rnormal()
    4.
    5.
    6.
    7.
2.
          regress y x1
    8.
            return scalar c1 = b[x1]
    9.
3.
          reg y x1 observed
              return scalar c2 = b[x1]
   10.
   11. }
   12. end
4
5 . simulate bhat_NoError=r(c1) bhat_Error=r(c2), reps(100): simulate1
          command: simulate1
     bhat NoError: r(c1)
       bhat Error: r(c2)
  Simulations ( 100)
                     - 2 - - - - - - 4 -
                                                     - 5
                                                           50
                                                         100
```

6 . sum

Variable	Obs	Mean	Std. Dev.	Min	Max
bhat_NoError	100	9.999062	.0106733	9.97547	10.02077
bhat_Error	100	4.991671	.0507424	4.884142	

Measurement error in X: correlated with X

- Measurement error can also be related to X_i
- For example if X_i is taxable income and individuals systematically underreport by 10%

$$\widetilde{X}_{1i} = 0.9 X_{1i}$$

Suppose we estimate

$$Y_i = \beta_0 + \beta_1 \widetilde{X}_{1i} + e_i \quad \text{with} \quad e_i = \beta_1 \left(X_i - \widetilde{X}_i \right) + u_i = 0.1 \beta_1 X_i + u_i$$

• This will give an OLS estimate of β_1 which is too high!

$$\begin{array}{lll} \underset{n \to \infty}{\text{plim}} \left(\widehat{\beta}_{1} \right) &=& \beta_{1} + \frac{Cov(\widetilde{X}_{1i}, e_{i})}{Var(\widetilde{X}_{1i})} \\ &=& \beta_{1} + \frac{Cov(0.9X_{i}, 0.1\beta_{1}X_{i} + u_{i})}{Var(0.9X_{i})} \\ &=& \beta_{1} + \frac{0.9 \cdot 0.1 \cdot \beta_{1} Var(X_{i})}{0.9^{2} Var(X_{i})} \\ &=& \beta_{1} \cdot \left(1 + \frac{1}{9} \right) \end{array}$$

Measurement error in the dependent variable Y

- Measurement error in Y is generally less problematic than measurement error in X
- Suppose Y is measured with classical error

$$\widetilde{\mathbf{Y}}_i = \mathbf{Y}_i + \omega_i$$

and we estimate

$$\widetilde{Y}_i = \beta_0 + \beta_1 X_i + \underbrace{u_i + \omega_i}_{e_i}$$

- The OLS estimate $\hat{\beta}_1$ will be unbiased and consistent because $E[e_i|X_i] = 0$
- The OLS estimate will be less precise because $Var(e_i) > Var(u_i)$

Measurement error in the dependent variable Y

```
1 . program simulate2, rclass
   1. quietly {
   2.
         drop all
         set obs 10000
   3.
   4.
        gen x1 = rnormal()
   5.
       gen y=5+10*x1+rnormal()
         gen v observed=v+rnormal()
   6
   7.
2.
        regress v xl
         return scalar c1 = b[x1]
   8.
   9.

 reg y_observed x1

  10.
          return scalar c2 = b[x1]
  11. }
  12. end
4
5 . simulate bhat_NoError=r(c1) bhat_Error=r(c2), reps(100): simulate2
       command: simulate2
    bhat NoError: r(c1)
     bhat Error: r(c2)
 Simulations (100)
     ----- 5
         50
                                           100
6 . sum
```

Variable	Obs	Mean	Std. Dev.	Min	Max
bhat_NoError	100	10.00078	.0103849	9.973895	10.02678
bhat_Error	100	10.00046	.0148451	9.957288	10.0349

Measurement error in the returns to education example

- Is measurement error a threat to internal validity in the regression of earnings on education?
- Data come from the Current Population Survey, a survey among households in the U.S.
- When individuals have to report their earnings and years of education in a survey it is not unlikely that they make mistakes.
- Earnings is the dependent variable so measurement error not so problematic.
- Measurement error in years of education is problematic and will give a biased and inconsistent estimate of the returns to education

Sample selection

- · Missing data are a common feature of economic data sets
- We consider 3 types of missing data

1 Data are missing at random

this will not impose a threat to internal validity

2 Data are missing based on X

- This will not impose a threat to internal validity.
- For example when we only observe education & earnings for those who completed high school.
- Can impose a threat to external validity.

Oata are missing based on Y

- This imposes a threat to internal validity.
- For example when individuals with high earnings refuse to report how much they earn
- Resulting bias in OLS estimates is called "sample selection bias".

Sample selection

• So far we assumed that X affects Y, but what if Y also affects X?

$$Y_i = \beta_0 + \beta_1 X_i + u_i \qquad \qquad X_i = \gamma_0 + \gamma_1 Y_i + v_i$$

- Simultaneous causality leads to biased & inconsistent OLS estimate.
- To show this we first solve for $Cov(X_i, u_i)$

$$Cov(X_i, u_i) = Cov(\gamma_0 + \gamma_1 Y_i + v_i, u_i)$$

$$= Cov(\gamma_1 Y_i, u_i)$$

$$= Cov(\gamma_1(\beta_0 + \beta_1 X_i + u_i), u_i)$$

$$= \gamma_1\beta_1 Cov(X_i, u_i) + \gamma_1 Var(u_i)$$

Solving for Cov(X_i, u_i) gives

$$Cov(X_i, u_i) = \frac{\gamma_1}{1 - \gamma_1 \beta_1} Var(u_i)$$

Simultaneous causality

• Substituting $Cov(X_i, u_i)$ in the formula for the plim of $\hat{\beta}_1$ gives

$$plim\left(\widehat{\beta}_{1}\right) = \beta_{1} + \frac{Cov(X_{1i}, u_{i})}{Var(X_{1i})} = \beta_{1} + \frac{\gamma_{1} Var(u_{i})}{(1 - \gamma_{1}\beta_{1}) Var(X_{1i})} \neq \beta_{1}$$

- Simultaneous causality is unlikely a threat to internal validity in returns to education example
 - · earnings are generally realized after completing (formal) education
- Simultaneous causality is more likely a threat to internal validity when
 - estimating the effect of class size on average test scores
 - estimating the effect of increasing the price on product demand

Heteroskedasticity and/or correlated error terms

- The threats to internal validity discussed so far
 - Lead to a violation of the first OLS assumption: $E[u_i|X_i] = 0$
 - Lead to biased & inconsistent OLS estimates of the coefficient(s)
- Heteroskedasticity and/or correlated error terms
 - Are a violation of the second OLS assumption: (X_{1i}, Y_i) are iid
 - Do not lead to biased & inconsistent OLS estimates of the coefficient(s)
 - But lead to incorrect standard errors
 - Hypothesis tests do not have the desired significance level
 - Confidence intervals do not have the desired confidence level.

Heteroskedasticity and/or correlated error terms

- Heteroskedasticity (Var (u_i) ≠ σ²_u) has been discussed during previous lectures
- Solution is to compute heteroskedasticity robust standard errors
- Correlated error terms

$$Cov(u_i, u_j) \neq 0$$
 for $i \neq j$

are due to nonrandom sampling

- For example if a dataset contains multiple members from 1 family, because instead of individuals entire families are sampled.
- · Solution: Compute cluster-robust se's that are robust to autocorrelation
- More about this in lecture on panel data

What to do when you doubt the internal validity?

- Apart from the last one, all discussed threats to internal validity lead to a violation *E* [*u_i*|*X_i*] = 0
- This implies OLS can't be used to estimate causal effect of X on Y.

What to do in this case:

- Omitted variables:
 - if observed, include them as additional regressors
 - if unobserved: use panel data or instrumental variables
- Functional form misspecification: adjust the functional form
- Measurement error:
 - develop model of measurement error and adjust estimates
 - Use instrumental variables
- Sample selection: use different estimation method (beyond scope of this course)
- Simultaneous causality: use instrumental variables

- Suppose we estimate a regression model that is internally valid.
- Can the statistical inferences be generalized from the population and setting studied to other populations and settings?

Threats to external validity:

- 1. Differences in populations
 - The population from which the sample is drawn might differ from the population of interest
 - If you estimate the returns to education for men, these results might not be informative if you want to know the returns to education for women

Threats to external validity (continued):

- 2. Differences in settings
 - The setting studied might differ from the setting of interest due to differences in laws, institutional environment and physical environment.
 - For example, the estimated returns to education using data from the U.S might not be informative for Norway
 - · the educational system is different
 - different labor market laws (minimum wage laws,..)

Internal & external validity when using regression analysis for forecasting

- Up to now we have dicussed the use of regression analysis to estimate causal effects
- Regression models can also be used for forecasting
- When regression models are used for forecasting
 - external validity is very important
 - internal validity less important
 - not very important that the estimated coefficients are unbiased and consistent

Internal & external validity when using regression analysis for forecasting

Consider the following 2 questions:

Linear regression

- What is the causal effect of an additional year of education on earnings
- What are the average earnings of a 40 year old man with 14 years of education in the U.S in 2014?

We have these results based on CPS data collected in March 2009 in the U.S.:

Number of obs -

Dincar regress	1011		Humber of opp					
					F(4, 597)	=	51.62	
					Prob > F	=	0.0000	
					R-squared	=	0.2640	
					Root MSE	=	10.868	
-								
		Robust						
earnings	Coef.	Std. Err.	t	P> t	[95% Conf. In	iter	val]	
education	2 127391	2012048	10 57	0 000	1 732236		522546	
female	-6 7412	9069453	-7 43	0.000	-8 522301		1 960009	
remare	1 350918	2594303	5 21	0.000	941411		860425	
age	1.350918	.2394303	5.21	0.000	.041411		0001767	
agez	0144463	.0031923	-4.53	0.000	0207159	- :	.0081767	
_cons	-34.79395	5.314045	-6.55	0.000	-45.23044	- 2	24.35745	
	earnings education female age 	earnings Coef. education 2.127391 female -6.7412 age 1.350918 age2 -0.144403 _cons -34.79395	Robust earnings Coef. Std. Err. education 2.127391 .2012048 female -6.7412 .9069453 age 1.350918 .2594303 age2 0144463 .0031923 _cons -34.79395 5.314045	Robust earnings Coef. Std. Err. t education 2.127391 .2012048 10.57 female -6.7412 .9069453 -7.43 age 1.350918 .2594303 5.21 age2 0144463 .0031923 -4.53 _cons -34.79395 5.314045 -6.55	Robust Robust earnings Coef. Std. Err. t P> t education 2.127391 .2012048 10.57 0.000 female -6.7412 .9069453 -7.43 0.000 age 1.015463 .0031923 -5.21 0.000 _cons -34.79395 5.314045 -6.55 0.000	Robust F(4, 597) Prob > F R-squared Root MSE Root MSE earnings Coef. Std. Err. t P> t [95% Conf. Ir education 2.127391 .2012048 10.57 0.000 1.732236 female -6.7412 .9069453 -7.43 0.000 -8.522391 age 1.0154463 .0031923 -4.53 0.000 0207159 _cons -34.79395 5.314045 -6.55 0.000 -45.23044	F(4, 597) = Prob > F Prob > F Robust Coef. Std. Err. t t education female -6.7412 .20643 age 1.350918 .2594303 5.21 0.000 .841411 age2 0144663 -34.79395 5.314045 -6.55 0.000 -45.23044	

602

Internal & external validity when using regression analysis for forecasting

- The regression results can be used to answer the first question
 - if the OLS estimate on education is unbiased and consistent
 - if there are no threats to internal validity
- The regression results can be used to answer the second question
 - if the included explanatory variables 'explain' a lot of the variation in earnings
 - if the regression is externally valid
 - if the population and setting studied are sufficiently close to the population and setting of interest
 - It is not nessesary that the OLS estimate on education is unbiased and consistent.

