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Lecture outline

• Why study experiments?

• The potential outcome framework.

• An ideal randomized experiment, potential outcomes & regression
analysis

• Conditional mean independence vs conditional mean zero

• Randomized experiments in practice

• Threats to internal validity in a randomized experiment

• Threats to external validity in a randomized experiment
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Why study experiments?

• Ideal randomized controlled experiments provide a conceptual
benchmark for assessing observational studies.

• Experiments can overcome the threats to internal validity of
observational studies, however they have their own threats to internal
and external validity.

• Actual experiments are rare ($$$) but influential.

• Thinking about experiments helps us to understand quasi-experiments,
or “natural experiments,” if “natural” variation induces “as if” random
assignment (topic of next week)
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Terminology: experiments and quasi-experiments

An experiment is designed and implemented consciously by human
researchers.

• An experiment randomly assigns subjects to treatment
and control groups (think of clinical drug trials)

A quasi-experiment or natural experiment has a source of randomization that
is “as if” randomly assigned.

• This variation was however not the result of an explicit
randomized treatment and control design.

Program evaluation is the field of econometrics aimed at evaluating the
effect of a program or policy, for example, an ad campaign to
cut smoking, or a job training program.
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Different Types of Experiments: Three Examples

• Clinical drug trial: does a proposed drug lower cholesterol?

• Y = cholesterol level
• X = treatment or control group (or dose of drug)

• Job training program

• Y = has a job, or not (or Y = wage income)
• X = went through experimental program, or not

• Class size effect (Tennessee class size experiment)

• Y = test score (Stanford Achievement Test)
• X =being in a small class



6

The Potential Outcome Framework

• Suppose we want to know the causal effect of a binary treatment Xi on
the outcome Yi

• For example let Yi be health and the treatment is a new medicine with

Xi = 1 −→ takes new medicine

Xi = 0 −→ does not take new medicine

• For each individual there exist two potential outcomes

Yi (1) is the outcome of individual i if he takes the new medicine

Yi (0) is the outcome of individual i if he does not take the new medicine

• The causal effect of the treatment on the outcome of individual i is

Causal effecti = Yi (1)− Yi (0)
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The Potential Outcome Framework

• The observed outcome Yi can be written in terms of the potential
outcomes:

Yi = Yi (1) · Xi + Yi (0) · (1− Xi)

• If the individual received the treatment (Xi = 1):

Yi = Yi (1) · 1 + Yi (0) · 0 = Yi (1)

• If the individual did not receive the treatment (Xi = 0):

Yi = Yi (1) · 0 + Yi (0) · 1 = Yi (0)

The identification problem: We cannot identify the causal effect for individual
i because we observe either Yi(1) or Yi(0) but never both!
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The Potential Outcome Framework & A Randomized Experiment

• Although we can never observe the causal effect for individual i , we
might be able to estimate the average causal effect in a population.

• The average causal effect/ average treatment effect:

E [Yi (1)− Yi (0)] = E [Yi (1)]− E [Yi (0)]

• Suppose we set up a ideal randomized experiment

• we take a random sample of the population

• we randomly give half of the sample the treatment,

• the other half does not get the treatment.
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The Potential Outcome Framework & A Randomized Experiment

• The potential outcomes can differ between individuals

Yi (1) 6= Yj (1) and Yi (0) 6= Yj (0) for i 6= j

• However if the treatment Xi is randomly assigned the distribution of
potential outcomes will be the same in the treatment group (Xi = 1) and
in the control group (Xi = 0)

• With random assignment the potential outcomes are independent of the
treatment

Yi (1) , Yi (0) ⊥ Xi

• We thus have that

E [Yi (1) |Xi = 1] = E [Yi (1) |Xi = 0]

E [Yi (0) |Xi = 1] = E [Yi (0) |Xi = 0]
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The Potential Outcome Framework & A Randomized Experiment

• In a randomized experiment individuals are randomly assigned to a
treatment and control group, we therefore have that

E [Yi(1)] = E [Yi(1) | Xi = 1] = E [Yi | Xi = 1]

E [Yi(0)] = E [Yi(0) | Xi = 0] = E [Yi | Xi = 0]

• This implies that

E [Yi (1)− Yi (0)] = E [Yi (1)]−E [Yi (0)] = E [Yi | Xi = 1]−E [Yi | Xi = 0]

• We can thus estimate the average causal effect of the treatment by
taking the difference in mean outcomes of the individuals in the treated
group and control group
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Example: project Star

• A large-scale and influential randomized experiment: Project STAR
(Student-Teacher Achievement Ratio)

• Kindergarten students and their teachers were randomly assigned to
one of three groups beginning in the 1985-1986 school year:

• small classes (13-17 students per teacher),

• regular-size classes (22-25 students),

• regular/aide classes (22-25 students) which also included a
full-time teacher’s aide.

• Over all 4 years about 11,600 students from 80 schools participated in
the experiment

• Project STAR was funded by the Tennessee legislature, at a total cost of
approximately $12 million over four years.
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Example: project Star

• Kindergarten students were randomly assigned to 3 groups

• To simplify we combine the regular-size classes and the regular-size
classes with an aide into 1 group

• This gives two groups:

• A treatment group (Xi = 1): students assigned to a small class
(13-17 students)

• A control group (Xi = 0): students assigned to a regular class
(22-25 students)

• We are interested in the causal effect of class size on student
achievement.

• The outcome variable Yi is the Stanford Achievement Test score at the
end of kindergarten.
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Example: project Star

• For each student i we have two potential outcomes:

• Yi (1) is the test score in case student i would be in a small class

• Yi (0) is the test score in case student i would be in a regular class

• The causal effect of class size on test score for pupil i is Yi (1)− Yi (0)

• this is unobserved.

• Because students were randomly assigned to the treatment group
(small class) and the control group (regular class)

• we can estimate the mean causal effect E [Yi (1)− Yi (0)]

• by comparing mean test scores of the students in a small class
(E [Yi |Xi = 1])

• with the mean test scores of students in a regular class
(E [Yi |Xi = 0])
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Example: project Star

• Mean test score students in regular class: E [Yi |Xi = 0] = 918.20

• Mean test score students in small class: E [Yi |Xi = 1] = 931.94

• Estimate of average causal effect: E [Yi |Xi = 1]− E [Yi |Xi = 0] = 13.74

  Tuesday April 1 14:28:17 2014   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . ttest testscore, by(small_class)

Two-sample t test with equal variances

   Group      Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]

       0     4048    918.2013    1.135017    72.21422    915.9761    920.4266
       1     1738    931.9419    1.831611    76.35863    928.3495    935.5343

combined     5786    922.3287    .9695111     73.7466    920.4281    924.2293

    diff            -13.74055    2.107334               -17.87172   -9.609391

    diff = mean( 0) - mean( 1)                                      t =  -6.5204
Ho: diff = 0                                     degrees of freedom =     5784

    Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0
 Pr(T < t) = 0.0000         Pr(|T| > |t|) = 0.0000          Pr(T > t) = 1.0000
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From Potential Outcomes to Regression

• Consider subject i drawn at random from a population and let:

• Xi = 1 if subject is treated, Xi = 0 if not (binary treatment)

• Yi(0) =potential outcome for subject i if untreated

• Yi(1) =potential outcome for subject i if treated

• We saw on slide 7 that we can write the observed outcome as a function
of the potential outcomes:

Yi = Yi (1) · Xi + Yi (0) · (1− Xi )
rewrite

= Yi (0) + [Yi (1)− Yi (0)] · Xi
add & subtract E [Yi (0)]

= E [Yi (0)] + [Yi (1)− Yi (0)] · Xi + [Yi (0)− E [Yi (0)]]
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From Potential Outcomes to Regression

Let,

• β0 = E [Yi (0)]
• β1i = [Yi (1)− Yi (0)] is the causal effect for individual i
• ui = [Yi(0)− E [Yi (0)]]

Then we have

Yi = E [Yi (0)]︸ ︷︷ ︸
β0

+ [Yi (1)− Yi (0)]︸ ︷︷ ︸
β1i

· Xi + [Yi(0)− E [Yi (0)]]︸ ︷︷ ︸
ui

If the causal effect is the same for all i , β1i = β1 for i = 1, . . . , n, we obtain the
usual regression model

Yi = β0 + β1Xi + ui
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Potential Outcomes, Regression & a Randomized Experiment

In an ideal randomized experiment we have that

• the potential outcomes are independent of the treatment

Yi (1) , Yi (0) ⊥ Xi

• We can thus estimate the average causal effect of the treatment by

E [Yi |Xi = 1]− E [Yi |Xi = 0]

In a regression framework this implies that:

• receiving the treatment is unrelated to the error term:

E [ui |Xi ] = 0

• We can thus estimate the average causal effect of the treatment by
using OLS to estimate

Yi = β0 + β1 · Xi + ui

Differences Estimator: β̂1 = ̂E [Yi |Xi = 1]− ̂E [Yi |Xi = 0]



18

Example: project Star

• We can therefore also estimate the average causal effect of class size
by estimating a simple regression model

  Tuesday April 1 15:58:04 2014   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . regress testscore small_class

      Source        SS       df       MS              Number of obs =     5786
           F(  1,  5784) =    42.51

       Model   229572.723     1  229572.723           Prob > F      =  0.0000
    Residual     31232500  5784  5399.80983           R-squared     =  0.0073

           Adj R-squared =  0.0071
       Total   31462072.8  5785  5438.56055           Root MSE      =  73.483

   testscore       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

 small_class    13.74055   2.107334     6.52   0.000     9.609391    17.87172
       _cons    918.2013   1.154965   795.00   0.000     915.9372    920.4655

• β̂0 = ̂E [Yi (0)] = 918.20

• β̂1 = ̂E [Yi (1)− Yi (0)] = 13.74 is estimated average causal effect of
being in a small class instead of a regular class



19

Randomization conditional on covariates

• In some experiments the treatment is randomly assigned conditional on
individual characteristics

• For example, let Yi be earnings and

• Xi = 1 if individual is assigned to the treatment group that
participates in a job training program

• Xi = 0 if individual is assigned to the control group that does not
participate in a job training program

• Suppose that the random assignment is conditional on the level of
education where

• 60% of low educated individuals are randomly assigned to the job
training program,

• 40% of high educated individuals are randomly assigned to the job
training program
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Randomization conditional on covariates

Education i Xi Yi (0) Yi (1) causal effect Yi

high 1 1 10 20 10 20
high 2 1 10 20 10 20
high 3 0 10 20 10 10
high 4 0 10 20 10 10
high 5 0 10 20 10 10

low 6 1 0 10 10 10
low 7 1 0 10 10 10
low 8 1 0 10 10 10
low 9 0 0 10 10 0
low 10 0 0 10 10 0

E [Yi |Xi = 1]− E [Yi |Xi = 0] = 20+20+10+10+10
5 − 10+10+10+0+0

5 = 14− 6 = 8

However, if we estimate effect conditional on education:

E [Yi |Xi = 1, high]− E [Yi |Xi = 0, high] = 20+20
2 − 10+10+10

3 = 20− 10 = 10

E [Yi |Xi = 1, low ]− E [Yi |Xi = 0, low ] = 10+10+10
3 − 0+0

2 = 10− 0 = 10
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Randomization conditional on covariates

In a regression framework:

• If we estimate Yi = β0 + β1Xi + ui , the conditional mean zero
assumption (E [ui |Xi ] = 0) will be violated.

• The individuals in the control group are on average higher educated
than the individuals in the treatment group

• High educated individuals generally have higher earnings.

• β̂1 will be a biased estimate of the average causal effect of the job
training program due to omitted variable bias.
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Randomization conditional on covariates

• However, conditional on education assignment to the treatment group is
random

• If we include education as control variable we can obtain an unbiased
estimate of the average causal effect of the job training program

• We will however not obtain an unbiased estimate of the effect of
education,

• because education is likely correlated with unobserved
characteristics (ability, motivation)
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Conditional Mean Independence (S&W appendix 7.1)

Suppose we have the following regression model

Yi = β0 + β1Xi + β2Wi + ui

• Yi is earnings
• Xi equals 1 if individual participated in job training program
• Wi equals 1 for high educated individuals 0 for low educated individuals

• Until now we have always defined the first OLS assumption to be

E [ui |Xi ,Wi ] = 0

• This means that both Xi and Wi are uncorrelated with the error term

• In the example Wi is likely correlated with ui

• But conditional on education treatment assignment is random, so
conditional on Wi , Xi is uncorrelated with ui
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Conditional Mean Independence (S&W appendix 7.1)

Conditional Mean Independence : E [ui |Xi ,Wi ] = E [ui |Wi ] 6= 0

• Under Conditional Mean Independence, OLS will give an unbiased
estimate of the causal effect of Xi :

Yi = β0 + β1Xi + β2Wi + ui

• E [Yi |Xi = 1,Wi ] = β0 + β1 + β2Wi + E [ui |Xi = 1,Wi ]

• E [Yi |Xi = 0,Wi ] = β0 + β1 + β2Wi + E [ui |Xi = 0,Wi ]

E [Yi |Xi = 1,Wi ]− E [Yi |Xi = 0,Wi ] = β1 + E [ui |Xi = 1,Wi ]− E [ui |Xi = 0,Wi ]

= β1 + E [ui |Wi ]− E [ui |Wi ]

= β1
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Conditional Mean Independence (S&W appendix 7.1)

Conditional Mean Independence : E [ui |Xi ,Wi ] = E [ui |Wi ] 6= 0

• Under Conditional Mean Independence, OLS will give a biased estimate
of the causal effect of Wi

Yi = β0 + β1Xi + β2Wi + ui

• E [Yi |Xi ,Wi = 1] = β0 + β1Xi + β2 + E [ui |Xi ,Wi = 1]

• E [Yi |Xi ,Wi = 0] = β0 + β1Xi + β2 + E [ui |Xi ,Wi = 0]

E [Yi |Xi ,Wi = 1]− E [Yi |Xi ,Wi = 0] = β2 + E [ui |Xi ,Wi = 1]− E [ui |Xi ,Wi = 0]

= β2 + E [ui |Wi = 1]− E [ui |Wi = 0]

6= β2

• This is unproblematic as long as we are only interested in the causal
effect of Xi and not in the causal effect of Wi
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Conditional Mean Independence (S&W appendix 7.1)

• Concept of Conditional Mean Independence also relevant in studies with
observational data.

• Often we are interested in obtaining an unbiased & consistent estimate
of 1 particular variable Xi on an outcome Yi

• We generally include control variables W1i , . . . ,Wri to eliminate omitted
variable bias

• This will give an unbiased & consistent estimate of the effect of Xi if

E [ui |Xi ,W1i , . . . ,Wri ] = E [ui |W1i , . . . ,Wri ]

• But often we don’t obtain unbiased & consistent estimates of
W1i , . . . ,Wri because

E [ui |W1i , . . . ,Wri ] 6= 0
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The differences estimator with additional regressors

• One reason to include control variables is when assignment is random
conditional on observed characteristics

• Another reason is to increase the precision of the estimate of the
average treatment effect.

• If you observe pre-treatment characteristics that affect the outcome
variable, you can include these to reduce the variance of the error term

Yi = β0 + β1Xi + εi

Yi = β0 + β1Xi + δ1W1i + . . .+ δr Wri + ui

Var (εi) > Var (ui)

• This will reduce the standard error of the estimated effect of the
treatment.

• But never include post-treatment characteristics, these are “bad
controls”!
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Example: project Star

  Wednesday April 2 16:20:17 2014   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . regress testscore small_class

      Source        SS       df       MS              Number of obs =     5786
           F(  1,  5784) =    42.51

       Model   229572.723     1  229572.723           Prob > F      =  0.0000
    Residual     31232500  5784  5399.80983           R-squared     =  0.0073

           Adj R-squared =  0.0071
       Total   31462072.8  5785  5438.56055           Root MSE      =  73.483

   testscore       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

 small_class    13.74055   2.107334     6.52   0.000     9.609391    17.87172
       _cons    918.2013   1.154965   795.00   0.000     915.9372    920.4655

2 . regress testscore small_class boy

      Source        SS       df       MS              Number of obs =     5786
           F(  2,  5783) =    46.90

       Model   502140.464     2  251070.232           Prob > F      =  0.0000
    Residual   30959932.3  5783  5353.61098           R-squared     =  0.0160

           Adj R-squared =  0.0156
       Total   31462072.8  5785  5438.56055           Root MSE      =  73.168

   testscore       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

 small_class    13.76958   2.098303     6.56   0.000     9.656121    17.88304
         boy   -13.73209   1.924522    -7.14   0.000    -17.50488   -9.959309
       _cons    925.2438   1.515476   610.53   0.000     922.2729    928.2147
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Threats to internal validity in a randomized experiment

• Analyzing data from an ideal randomized experiment will give an
unbiased & consistent estimate of the causal effect of the treatment.

• In practice, setting up an ideal randomized experiment is not easy and
often things do not go as planned

• This can lead to the following threats to internal validity

• Failure to randomize

• Failure to follow the treatment protocol

• Attrition

• Experimental effects/ Hawthorne effect

• Small samples
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Failure to randomize

• The treatment might not be assigned randomly but instead is based on
characteristics or preferences of the subjects

• If this is due to the fact that the experimenter assigned the treatment
randomly conditional on observed characteristics...

• ...we can estimate the causal effect by including these observed
characteristics in the regression (conditional mean independence)

• If the treatment is randomly assigned conditional on unobserved
characteristics or preferences...

• ...the estimated treatment “effect” will reflect both the effect of the
treatment and the effect of these unobserved characteristics.
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Failure to randomize

• We can “check” whether the treatment was randomly assigned by
comparing observed characteristics between the treatment and control
group.

• Table shows mean characteristics of students assigned to small vs
regular classes in project STAR

Mean Mean Difference p-value
small class regular class

Gender (boy=1) 0.514 0.513 0.001 0.969

Race (black=1) 0.312 0.331 -0.019 0.140

Eligible for free lunch 0.471 0.490 -0.019 0.162

• No significant difference in the observed characteristics between those
assigned to the treatment group (small class) and the control group
(regular class)
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Failure to follow the treatment protocol

• Even if treatment assignment is random, treatment receipt might not be.

• Individuals assigned to the treatment group might not receive the
treatment

• for example if individuals assigned to a job training program do not
show up for the training sessions

• Individuals assigned to the control group might receive the treatment

• for example if individuals assigned to the control group manage to
convince the instructor and attend the training sessions.

• If Xi equals 1 if an individual received the treatment and 0 otherwise....

• ...regressing Yi on Xi will give a biased estimate of the treatment effect.

• Treatment received is related to (unobserved) characteristics and
preferences!



33

Failure to follow the treatment protocol

• If we have data on the treatment actually received Xi and on the initial
random assignment Zi ...

• ..we can use the instrumental variable approach to estimate the
treatment effect.

Yi = β0 + β1Xi + ui Xi = π0 + π1Zi + v1

• We can use the initial random assignment as instrument for the
treatment actually received!

Instrument relevance: Cov(Zi ,Xi) 6= 0 as long as treatment assignment
partially determines the treatment received, this condition
holds.

Instrument exogeneity: Cov(Zi , ui) = 0 as long as treatment assignment is
random, this condition holds.
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Attrition

• Attrition refers to subjects dropping out of the study after being randomly
assigned to the treatment or control group

• Not problematic if attrition is unrelated to the treatment.

• If attrition is related to the treatment, the OLS estimator of the treatment
effect will be biased

• For example if individuals that participated in the job training program
moved out of town because they found a better job (due to the training)

• This is a reincarnation of sample selection bias from Ch. 9 (the sample
is selected in a way related to the outcome variable).
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Experimental effect/ Hawthorne effect

Hawthorne effect: Human subjects might change their behavior, merely
because they are part of an experiment.

• For example, teachers assigned to small classes might put in extra effort

• They would like the researchers to find a positive effect of small class
size.

• Teachers like to teach small classes.
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Experimental effect/ Hawthorne effect

• In some experiments, a “double-blind” protocol can mitigate the
Hawthorne effect

• subjects and experimenters know that they are in an experiment....

• ...but neither knows which subjects are in the treatment group and
which in the control group.

• In this case the treatment & control group experience the same
experimental effects...

• ... and differences in outcomes can be attributed to the treatment.

• Unfortunately double-blind experiments are often not feasible within the
field of economics.
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Small samples

• Experiments with human subjects can be expensive.

• The sample size in experiments is therefore sometimes (too) small.

• Small samples do not produce biased estimates, but often produce
imprecise estimates (large se’s).

• In addition large-sample approximations might not be justified and
confidence intervals and hypothesis test might not be valid.
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Threats to external validity in a randomized experiment

• Can we generalize the results based on the randomized experiment to
other settings and populations?

Nonrepresentative sample: The population studied and the population of
interest might differ.

• Often experiments use subjects that signed up for participation in the
experiment (volunteers)

• These volunteers are often more motivated.

• Even if these volunteers are randomly assigned to treatment and control
group...

• ...the estimated average treatment effect might not be informative for a
general population.
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Threats to external validity in a randomized experiment

Nonrepresentative program or policy: Program or policy of interest might
differ from the program studied.

• Experimental program is often small scale and tightly monitored.

• The quality of the actual program, when widely implemented, might
therefore be lower than the experimental program.

General equilibrium effects: Turning a small experimental program into a
widespread, permanent program might change the economic
environment.

• An experiment testing a small scale job training program might find
positive effects on earnings.

• A large scale government funded job training program might not be
beneficial if it crowds out employer funded training.


