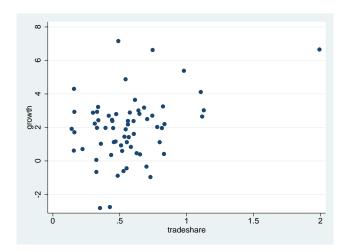
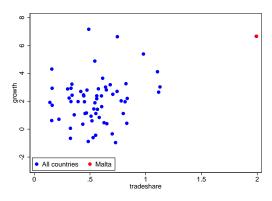
ECON4150 - Introductory Econometrics Seminar 2, 2015

Stock and Watson EE4.1, EE5.2


```
/*
Seminar 2
Author: Andrea
University of Oslo, spring semester 2015
------*/
clear all
cd "\pc\Desktop\courses\introductory_econometrics\seminar_2"
use "Growth.dta"
cap log close
log using EE4_1EE5_2.log,replace
```

Variables we are going to use:

- Country_name: String value, Name of country
- growth: Average annual percentage growth of real Gross Domestic Product (GDP)* from 1960 to 1995.
- tradeshare: The average share of trade in the economy from 1960 to 1995, measured as the sum of exports plus imports, divided by GDP;


Exercise E4.1, a)

two (scatter growth tradeshare) //yes, it looks like there is a positive association between the two variables $% \left(1\right) =\left(1\right) \left(1\right$

Exercise E4.1, b)

```
//b) show malta in the graph, contry_name is a string variable.
two (scatter growth tradeshare, mcolor(blue)) ///
    (scatter growth tradeshare if country_name=="Malta", mcolor(red)) ///
    , scheme(sicolor) legend(pos(7) ring(0) label(1 "All countries") label(2 "Malta"))
/*
    Malta does look as an outlier in the sense
    that its value of trade share is abnormaly distant from other values.
*/
```


Exercise E4.1, c)

```
reg growth tradeshare, r
Linear regression
                                              Number of obs = 65
                                              F(1, 63) = 12.09
                                              Prob > F = 0.0009
                                              R-squared = 0.1237
                                              Root MSE = 1.79
                        Robust
     growth | Coef. Std. Err. t P>|t| [95% Conf. Interval]
 tradeshare | 2.306434 .6632868 3.48 0.001 .9809608 3.631907
     _cons | .6402653 .4591457 1.39 0.168 -.2772641 1.557795
/*
  the estimated slope is the estimated beta1= 2.31.
  The estimated intercept is instead beta0=0.64
*/
```

Exercise E4.1, c)

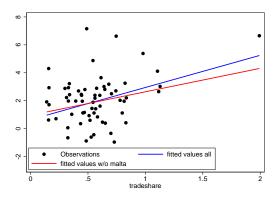
```
// predicted growth rate for country with tradeshare=.5
// growthhat = betaOhat + betaIhat * Tradeshare
display _b[_cons]+_b[tradeshare]*0.5
1.7934821

/*
    The predicted annual percentage growth between 1960 and 1995
    for a country with a trade share of 0.5 in the same period is 1.80
*/
display _b[_cons]+_b[tradeshare]*11
2.946699
/*
    The predicted annual percentage growth between 1960 and 1995 f
    or a country with a trade share of 1.0 in the same period is 2.95
*/
```

Exercise E4.1, d)

```
reg growth tradeshare if (country_name!="Malta"), r
Linear regression
                                            Number of obs = 64
                                            F(1, 62) = 3.77
                                            Prob > F = 0.0567
                                            R-squared = 0.0447
                                            Root MSE = 1.7894
                      Robust
    growth | Coef. Std. Err. t P>|t| [95% Conf. Interval]
 tradeshare | 1.680905 .8656171 1.94 0.057 -.0494392 3.411249
     _cons | .9574107 .5360579 1.79 0.079 -.1141537 2.028975
/*
```

The estimated slope is the estimated beta1 = 1.70, less steep than before The estimated intercept is instead beta0 = 0.96 */


Exercise E4.1, d)

```
display _b[_cons]+_b[tradeshare]*1
2.6383153
display _b[_cons]+_b[tradeshare]*0.5
1.797863
```

Exercise E4.1, e)

```
// first we predict the values for each regression and then we plot the graphs
reg growth tradeshare, r
predict growthhat
reg growth tradeshare if (country_name!="Malta"), r
predict growthhat_nomalta

two (scatter growth tradeshare, mcolor(black)) ///
(line growthhat tradeshare, lwidth(medthick) lpattern(solid) lcolor(blue)) ///
(line growthhat_nomalta tradeshare, lwidth(medthick) lpattern(solid) lcolor(red)) ///
, scheme(slcolor) legend(pos(7) ring(O)label(1 "Dbservations") label(2 "fitted values all") label(3 "fitted values w/o malta"))
```


Exercise E4.1, e)

*/

```
//f)
/*
   Malta is a freight transport site, which explains its large trade share.
many imported goods are immidiatly exported to other countries. Then imports and exoprts o
Malta are different from those of other countries.
This reasonins could justify dropping Malta from the analysis
```

Exercise E5.2, a)

```
//exclude data from Malta
drop if country_name=="Malta"
```

(1 observation deleted)

reg growth tradeshare, r

Linear regression

Number of obs = 64 F(1, 62) = 3.77 Prob > F = 0.0567 R-squared = 0.0447 Root MSE = 1.7894

growth	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
tradeshare		.8656171	1.94	0.057	0494392	3.411249
_cons		.5360579	1.79	0.079	1141537	2.028975

Exercise E5.2, a)

```
/*
    t statistics for h0: beta1=0 is t_act = (betahat1-0)/SE(betahat1)= 1.680905 / .8656171=1.94.
Stata uses the student t distribution that with n sufficiently large can be approximated to the standard normal the sampling distribution of the t-statistic is the Student's distribution with (n-k)
degrees of freedom,( k is number of regressors+intercept) only if two additional assumptions hold:
    - the error terms are homoskedastic
    - the error terms are normally distributed
```

Therefore the estimated slope is not statistically significant different from 0 at a 5% level. */

the critival value for(table 2 appendix, page 805, 2-sided values, n-2 degrees of freedom,62):
-10% significance leve,1 is t_c = 1.669, null hipotesis can be rejected as |t_act| > t_c
-5% significance level, is t_c = 1.999, null hipotesis can not be rejected as |t_act| < t_c
-1% significance level, is t_c = 2.38, null hipotesis can not be rejected as |t act| < t c

Exercise E5.2, b)

/* The two-tailed P-value for t_act=1.94 and 62 degree of freedom (not in the book) is 0.0567 that is larger than 0.05 as expected.

Exercise E5.2, c)

```
// The 90% confidence interval is 1.680905+ - 1.6698*0.8656171= [0.2355,3.1263].
// As expected the 0 is outside the intervall
// level(90) as an option in regression command will return 90% confidence intervall
reg growth tradeshare, r level(90)
```

Linear regression

Number of obs = 64 F(1, 62) = 3.77 Prob > F = 0.0567 R-squared = 0.0447 Root MSE = 1.7894

 growth		Robust Std. Err.		P> t		Interval]
tradeshare _cons	1.680905	.8656171 .5360579	1.94	0.057 0.079	.2354937	3.126316 1.852522

log close