ECON4150 - Introductory Econometrics

Seminar 1

Stock and Watson Chapter 2 \& 3

Empirical exercise E3.1: Data

- In this exercise we use the data set CPS92_12.dta
- Each month the Bureau of Labor Statistics in the U.S. Department of Labor conducts the "Current Population Survey" (CPS).
- The CPS provides data on labor force characteristics of the population, including the level of employment, unemployment, and earnings.
- Approximately 65,000 randomly selected U.S. households are surveyed each month.
- The file CPS92_12 contains the data for 1992 and 2012.
- These data are for full-time workers, defined as workers employed more than 35 hours per week for at least 48 weeks in the previous year.

Empirical exercise E3.1: Data

Series in Data Set:

- FEMALE: 1 if female; 0 if male
- YEAR: Year
- AHE : Average Hourly Earnings
- BACHELOR: 1 if worker has a bachelor's degree; 0 if worker has a high school degree

Empirical exercise E3.1: Data

. sum

Variable	Obs	Mean	Std. Dev.	Min	Max
year	15052	2001.886	9.999679	1992	2012
ahe	15052	15.66179	9.44204	$\mathbf{1 . 2 4 2 7 8 8}$	$\mathbf{9 1 . 4 5 6 0 2}$
bachelor	15052	.4595403	.4983769	0	1
female	15052	.4252591	.4943987	0	1
age	15052	29.67944	2.822929	25	34

Empirical exercise E3.1: question a)

> ttest ahe, by(year) unequal unpaired
Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95\% Conf.	rval]
1992	7612	11.61683	. 064409	5.61948	11.49057	11.74309
2012	7440	19.80026	. 1238916	10.68632	19.5574	20.04312
combined	15052	15.66179	. 0769607	9.44204	15.51094	15.81264
diff		-8.183424	. 139634		-8.457131	-7.909717

Empirical exercise E3.1: question b) \& c)

b)

```
1 . gen ahe_cpi=ahe if year==2012
    (7612 missing values generated)
2 . replace ahe_cpi=ahe*(229.6/140.3) if year==1992
    (7612 real changes made)
3
4 . ttest ahe_cpi, by(year) unequal unpaired
```

 Two-sample t test with unequal variances
 | Group | Obs | Mean | Std. Err. | Std. Dev. | 95\% Conf. | rval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1992 | 7612 | 19.01087 | . 1054049 | 9.19624 | 18.80425 | 19.21749 |
| 2012 | 7440 | 19.80026 | . 1238916 | 10.68632 | 19.5574 | 20.04312 |
| combined | 15052 | 19.40105 | . 0812489 | 9.968151 | 19.2418 | 19.56031 |
| diff | | -. 7893878 | . 1626632 | | -1.108228 | -. 4705473 |
| diff $=$ mean (1992) - mean(2012) | | | | | t | -4.8529 |
| Ho: diff $=0$ | | Satterthwaite's degrees of freedom | | | | 14619.3 |

 Ha: diff < \(0 \quad\) Ha: diff != \(0 \quad\) Ha: diff > 0
 $\operatorname{Pr}(\mathrm{T}<\mathrm{t})=0.0000 \quad \operatorname{Pr}(|\mathrm{~T}|>|\mathrm{t}|)=0.0000 \quad \operatorname{Pr}(\mathrm{~T}>\mathrm{t})=\mathbf{1 . 0 0 0 0}$
c) The results from part (b) adjust for changes in purchasing power. These results should be used.

Empirical exercise E3.1: question d)

1 . ttest ahe if year==2012, by(bachelor) unequal unpaired
Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	95\% Conf. In	erval]
0	3485	15.68547	. 1397007	8.247077	15.41157	15.95938
1	3955	23.42605	. 1790882	11.26264	23.07494	23.77717
combined	7440	19.80026	. 1238916	10.68632	19.5574	20.04312
diff		-7.74058	. 2271318		-8.185825	-7.295335
$\begin{aligned} & \text { diff }=\text { mean }(0)-\operatorname{mean}(1) \\ & \text { Ho: }{ }^{\text {diff }}=0\end{aligned}$			Satterthwaite's degrees of freedom =			-34.0797
			7203.16			
$\begin{gathered} \text { Ha: diff }<0 \\ \operatorname{Pr}(\mathrm{~T}<\mathrm{t})=0.0000 \end{gathered}$		Ha: diff !			Ha: diff > 0	
		$\operatorname{Pr}(\mathrm{T}>\mathrm{t})=1.0000$				

Empirical exercise E3.1: question e)

. ttest ahe_cpi if year==1992, by(bachelor) unequal unpaired
Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	95\% Conf. I	erval]			
0	4650	16.31645	. 1105541	7.538785	16.09971	16.53319			
1	2962	23.2408	. 1826822	9.942341	22.8826	23.59899			
combined	7612	19.01087	. 1054049	9.19624	18.80425	19.21749			
diff		-6.924345	. 2135298		-7.342955	-6.505734			
```diff = mean( 0) - mean(1) Ho: diff = 0```			Satterthwaite's degrees of freedom =			-32.4280			
			5091.99						
Ha: diff < 0						Ha: diff != 0		Ha: diff > 0	
$\operatorname{Pr}(\mathrm{T}<\mathrm{t})$	0.0000	$\operatorname{Pr}(\|\mathrm{T}\|>\|\mathrm{t}\|)=0.0000$			$\operatorname{Pr}(\mathrm{T}>\mathrm{t})=1.0000$				

## Empirical exercise E3.1: question f) i

. ttest ahe_cpi if bachelor==0, by(year) unequal unpaired
Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95\% Conf. I	rval]
1992	4650	16.31645	. 1105541	7.538785	16.09971	16.53319
2012	3485	15.68547	. 1397007	8.247077	15.41157	15.95938
combined	8135	16.04614	. 0870982	7.855756	15.87541	16.21688
diff		. 6309787	.178153		.2817458	. 9802115
```diff = mean( 1992) Ho: diff = 0```		- mean( 2012)			t	3.5418
		Satterthwaite's degrees of freedom				7121.15
Ha: diff < 0		Ha: diff != 0			Ha: diff > 0	
$\operatorname{Pr}(\mathrm{T}<\mathrm{t})$. 9998	$\operatorname{Pr}(\|\mathrm{T}\|>\|\mathrm{t}\|)=0.0004$			$\operatorname{Pr}(\mathrm{T}>\mathrm{t})=0.0002$	

- Wages of high school graduates fell by an estimated 0.63 dollars per hour from 1992 to 2012 (with a 95% confidence interval of -0.98 to -0.28)

Empirical exercise E3.1: question f) ii

. ttest ahe_cpi if bachelor==1, by(year) unequal unpaired
Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	d. Dev.	\% Conf.	val]
1992	2962	23.2408	. 1826822	9.942341	22.8826	23.59899
2012	3955	23.42605	. 1790882	11.26264	23.07494	23.77717
combined	6917	23.34672	. 1288569	10.71684	23.09412	23.59932
diff		-.185257 -.6867508 .3162368 $-\operatorname{mean}(2012)$ $t=$ $\mathbf{- 0 . 7 2 4 2}$ Satterthwaite's degrees offreedom $=$ $\mathbf{6 7 3 1 . 3 4}$				

- Wages of college graduates increased by an estimated 0.19 dollars per hour from 1992 to 2012 (with a 95% confidence interval of -0.32 to 0.69).

Empirical exercise E3.1: question f) iff

> ttest ahe_cpi if year==1992, by(bachelor) unequal unpaired
Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	95\% Conf.	erval]
0	4650	16.31645	. 1105541	7.538785	16.09971	16.53319
1	2962	23.2408	. 1826822	9.942341	22.8826	23.59899
combined	7612	19.01087	. 1054049	9.19624	18.80425	19.21749
diff		-6.924345	. 2135298		-7.342955	-6.505734
$\begin{aligned} \text { diff } & =\text { mean }(0)-\operatorname{mean}(\mathbf{1}) \\ \text { Ho: diff } & =0\end{aligned}$			Satterthwaite's degrees of freedom =			-32.4280
			5091.99			
$\begin{gathered} H a: \operatorname{diff}<0 \\ \operatorname{Pr}(T<t)=0.0000 \end{gathered}$		$\begin{aligned} & \text { Ha: diff }!= \\ & \operatorname{Pr}(\|T\|>\|t\|)=0.0000 \end{aligned}$			Ha: diff > 0	
		$\operatorname{Pr}(\mathrm{T}>\mathrm{t})=\mathbf{1 . 0 0 0 0}$				

. ttest ahe_cpi if year==2012, by(bachelor) unequal unpaired
Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	95\% Conf. I	erval]			
0	3485	15.68547	. 1397007	8.247077	15.41157	15.95938			
1	3955	23.42605	. 1790882	11.26264	23.07494	23.77717			
combined	7440	19.80026	. 1238916	10.68632	19.5574	20.04312			
diff		-7.74058	. 2271318		-8.185825	-7.295335			
$\begin{aligned} \text { diff } & =\text { mean }(0)-\operatorname{mean}(\mathbf{1}) \\ \text { Ho: diff } & =0\end{aligned}$			Satterthwaite's degrees of freedom =			-34.0797			
			7203.16						
Ha: diff < 0						Ha: diff != 0		Ha: diff > 0	
$\operatorname{Pr}(\mathrm{T}<\mathrm{t})$	0.0000	$\operatorname{Pr}(\|T\|>\|t\|)=0.0000$			$\operatorname{Pr}(\mathrm{T}>\mathrm{t})=1.0000$				

Empirical exercise E3.1: question g)

1 . keep if bachelor==0 (6917 observations deleted)

2 . ttest ahe_cpi if year == 1992, by(female) unequal unpaired
Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	td. Dev.	95\% Conf.	rval]
0	2774	17.63061	. 1514204	7.975126	17.3337	17.92751
1	1876	14.37324	. 1469648	6.365458	14.08501	14.66147
combined	4650	16.31645	. 1105541	7.538785	16.09971	16.53319
diff		3.257365	. 2110137		2.843675	3.671055
$\begin{aligned} \text { diff } & =\text { mean }(0)-\operatorname{mean}(1) \\ \text { Ho: diff } & =0\end{aligned}$			Satterthwaite's degrees of freedom			15.4367
			4522.65			
Ha: diff $<0$$\operatorname{Pr}(\mathrm{~T}<\mathrm{t})=1.0000$		Ha: diff != 0			Ha: diff > 0	
		$\operatorname{Pr}(\|\mathrm{T}\|>\|\mathrm{t}\|)=0.0000$			$\operatorname{Pr}(\mathrm{T}>\mathrm{t})=0.0000$	

3 . ttest ahe_cpi if year == 2012, by(female) unequal unpaired
Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95\% Conf.	val]
0	2279	17.04357	. 1864512	8.900968	16.67794	17.40921
1	1206	13.11905	. 1746657	6.065704	12.77637	13.46173
combined	3485	15.68547	. 1397007	8.247077	15.41157	15.95938
diff		3.924525	. 2554841		3.4236	4.42545
$\begin{aligned} & \text { diff }=\text { mean }(0)-\operatorname{mean}(1) \\ & \text { Ho: }{ }^{\text {diff }}=0\end{aligned}$			Satterthwaite's degrees of freedom =			$\begin{aligned} & 15.3611 \\ & 3269.91 \end{aligned}$
Ha: diff < 0$\operatorname{Pr}(\mathrm{~T}<\mathrm{t})=1.0000$		Ha: diff ! $=0$		0.0000	Ha: diff > 0	

Empirical exercise E3.1: question g)

Gender Gap in Earnings for High School Graduates

Year	\bar{Y}_{m}	$\boldsymbol{s}_{\boldsymbol{m}}$	$\boldsymbol{n}_{\boldsymbol{m}}$	\bar{Y}_{w}	$\boldsymbol{s}_{\boldsymbol{w}}$	\boldsymbol{n}_{w}	$\bar{Y}_{m}-\bar{Y}_{w}$	$\boldsymbol{S E}\left(\bar{Y}_{m}-\bar{Y}_{w}\right)$	$\mathbf{9 5 \%} \mathbf{~ C I}$
1992	17.63	7.98	2774	14.37	6.37	1876	3.26	0.21	$2.84-3.67$
2012	17.04	8.90	2279	13.12	6.07	1206	3.92	0.26	$3.42-4.43$

- There is a large and statistically significant gender gap in earnings for high school graduates.
- In 2012 the estimated gap was $\$ 3.92$ per hour; in 1992 the estimated gap was $\$ 3.26$ per hour (in $\$ 2012$).
- The estimated gender gap in 2012 is somewhat larger than is the gender gap for college gap for college graduates (which is $\$ 3.70$ in Table 3.1 in the text).
- Moreover the estimated increase in the gender gap from 1992 to 2012 is also somewhat larger for high school graduates than it was for college graduates ($\$ 0.66$ for high school graduates versus $\$ 0.36$ for college graduates).

