
ECON3150/4150 Spring 2015
Lecture 2 - Estimators and hypothesis testing

Siv-Elisabeth Skjelbred

University of Oslo

22. januar 2016
Last updated January 20, 2016

1 / 51



Overview

In this lecture we will cover remainder of chapter 2 and chapter 3

• Distributions

• Learn about estimators and their properties.

• Go through the statistical methods for estimation, hypothesis testing
and confidence intervals.
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Distributions
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Probability distribution

Probability distribution

Probability distribution of a discrete random variable is a list of all possible
pais [x,pr(x)] where x is the realizations of a random variable X and pr(x)
is the probability that x occurs.

• Important property:
∑

Pr(x) = 1

• For a continuous variable you cannot list the probability of each event
as there are too many and chance of any given outcome happening is
0.
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Probability density functions - The normal distribution:

Normal distribution is one of the most common density functions.
Properties:

• Bell-shaped with (µ) and variance σ2, written as: N(µ, σ2)

• Symmetric around the mean

• 95% of its probability between µ+ /− 1.96σ.

• Note: A sum of n normally distributed random variables is itself
normally distributed.
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Example normal distribution
Consider again housing prices given that X=5 000.

• Bell shaped: The curve is highest for the most plausible values the
house price might take.

• The mean (or average price of a house with a lot size of 5000 sqft is
$61 153.

• The variance is 683 812 (not much intuitive interpretation but it
reflects dispersion) 6 / 51



Example normal distribution
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Standard normal distribution

Standard normal distribution. Properties:

• N(0,1)

• Typically the variable is denoted Z and the standard normal
cumulative distribution function is denoted with φ and
PR(Z ≤ c) = φ(c)

• A normal distributed variable can be standardized using: Z = X−µx
σx
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Using normal statistical tables

• The table for the standard normal distribution can be found in the
appendix in the text book.

• Can use N(0,1) tables to figure out probabilities for the N(µ, σ2) for
any µ and σ. If Y ∼ N(µ, σ) then:

Z =
X − µ
σ

is N(0,1).

• This is sometimes called the Z-score.

• For any random variable, if you subtract off its mean and divide by
the standard deviation you always get a new random variable with
mean zero and variance one.
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Other common distributions

Chi-square distribution:

• If X has a Chi-square distribution with k degrees of freedom then
X ∼ χ2

k

• The chi-square distribution is defined only for positive values of X.

• Is used for comparing estimated variance values to the values based
on theoretical assumptions.
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Other common distributions

Student t:

• X ∼ tk - student t with k degrees of freedom

• The student-t is bell-shaped and is symmetric

• Used to calculate confidence intervals (using the critical t-value)

F-distribution:

• X ∼ Fk1,k2 , F F distribution with k1 degrees of freedom n the
numerator and k2 degrees of freedom in the denominator

• The F distribution we will use to compute F-tests.

• To save space, F-statistical tables usually only provides the 5%
significance statistics.

• F-random variables are always positive.
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Reading distribution tables

• The degrees of freedom for student-t and chi-square tells you what
row in the statistical table to look at.

• For the F-distribution the degrees of freedom in the numerator tells
you the row while the degrees of freedom in the denominator tells you
the column to look at.
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Bernoulli distribution

• A Bernoulli random variable is a binary random variable, which means
that the outcome is either zero or one.

• The Bernoulli distribution of variable G is then:

G =

{
1 with probability p

0 with probability (1− p)

• The simplicity of the Bernoulli distribution makes the variance and
mean simple to calculate
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Actual vs asymptotic distribution

Asymptotic distribution

The asymptotic distribution is the approximate sampling distributing of
a random variable computed using a large sample. The exact distribution
or the finite-sample distribution is the sampling distribution that exactly
describes the distribution.

Many distributions approximate the normal distribution when the number
of observations of the random variable increase. This means that we can
use the normal distribution to compute approximate probabilities.
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Statistics
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Key terms

• Population: The ”universe” all items (countries, individuals etc) of
interest.

• Sample: A subset (preferrably random) of the population.

• Parameter: Summary value of the population.

• Statistic: summary measure of the sample.
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Random sampling

• A simple random sample is a subset of observations chosen from a
larger set (the population).

• Each observation is chosen randomly and entirely by chance such that
each member of the population is equally likely to be included in the
sample.

• The sample size if of size n while the population is of size N.

• Simple random sampling ensures that the observations are
independently and identically distributed (i.i.d)

• Same probability distribution
• Mutually independent: The value of Y1 provides no information about

the value of Y2
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Estimates and population parameters

• We are interested in identifying the population parameters: the
characteristics of the population distribution function.

• However, we do not typically observe the full population, but only a
sample.

• We thus compute estimates of the parameters using estimators.

• An estimate is the numerical value computed using an estimator on a
specific sample.

• An estimator is a mathematical rule used to calculate an estimate.

Estimates are typically denoted with a hat.
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Statistics

A random sample can be used to:

• Estimate the population mean

• Test hypotheses about the population mean

• Compute a confidence interval for the population mean
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Estimators and properties
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Choosing estimator

The best estimator is the one that is as close as possible to the unknown
true value. More specifically a ’good’ estimator for the population mean is:

• Unbiased: E (µ̂y )− µy = 0 which means that E (µ̂y ) = µy .

• Consistent: µ̂y
p−→ µy .

• Efficient: var(µ̂y ) < var(µ̃y ) where˜denotes another estimator.
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Estimating the population mean

Potential estimators of the population mean:

• The sample average (Ȳ ).

• The value of the first observation (Y1).

• The sample median.

• The sample mode.

• ...
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Sample average

The sample average is:

• Unbiased:

E (Ȳ ) =
1

n

n∑
i=1

E (Yi ) = µy

• Consistent - when n is large Ȳ is close to µy with high probability.

• The most efficient in most cases.

Var(Ȳ ) = var(
1

n

n∑
i=1

Yi ) =
σ2
y

n

BLUE

The sample average is the Best Linear Unbiased Estimator for the
population mean. It is the most efficient among all unbiased estimators
that are linear functions of Y1, ....,Yn.
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Proof BLUE - Unbiased

The sample average is a unbiased estimator of the population parameter:

E (Ȳ ) == µy

The expected value of the sample average is the true population
parameter. Thus the sample average is unbiased.

Rules of summation:

•
∑

aX = a
∑

X

• E (X + Y ) = E (X ) + E (Y )

•
∑

a = na
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Proof BLUE - Consistent

The sample mean is consistent if the probability that Ȳ is in the range
(µy − c) to (µy + c) becomes arbitrarily close to 1 as n increases for any
constant c > 0. (Key Concept 2.6)

Law of large numbers

Under general conditions, the sample average will be close to the
population mean with very high probability when the sample is large.
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Proof BLUE - Efficient

The sample average vs Y1

• Both are unbiased: E (Y1) = µy = E (Ȳ )

• Both are consistent under the same assumptions

• Var(Y1) = σ2
y > Var(Ȳ ) =

σ2
y

n

The sample average is a more efficient estimator than using the first
observation.
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Sampling distribution of the sample average

For small sample sizes the distribution of Ȳ is complicated but if n is large
the central limit theorem dictates that it is asymptotically normal:

Central limit theorem

Under general conditions when the sample size is large: the sampling
distribution of the standardized sample average is well approximated by a
standard normal distribution.

That is: Ȳ is approximately N(µy , σ
2
Ȳ

)
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Example: CLT
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Non-random sampling

Non-random sampling

Non-random sampling may result in unbiased, inconsistent, estimators
even if the estimator are unbiased under random sampling.
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Example

If we want to estimate the height of all University of Oslo students where
should we go to sample?

• Bus stop?

• Student union?

• Students visiting office during office hours?

Are there any problems with these sampling points?
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Measure of distribution

Standard error

SE (Ȳ ) = σ̂Ȳ =
sy√
n

• The standard error of the sample average says something about the
uncertainty around the estimate of the mean.

• It is an estimate of how far the sample mean is likely to be from the
population mean.

• The standard error falls as the sample size increases as the extent of
chance variation is reduced.

• The standard error is used to indicate uncertainty around the
estimate.

31 / 51



Measure of distribution:

Sample standard deviation

sy =

√√√√ 1

n − 1

n∑
i=1

(Yi − Ȳ )2

• The sample standard deviation is the degree to which individuals
within the sample differs from the sample mean.

• The sample standard deviation will tend to the population standard
deviation (σy ) as the sample size increases.

• The sample standard deviation is used to describe how widely
scattered the measurements are.
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Confidence intervals
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Confidence intervals and hypothesis testing

• The confidence interval is an interval estimate for the population
parameter such that the chance that the true population parameter
lies within that interval is 1− α.

• For example

Pr(tα/2,v ) < z < Pr(t(1−α/2),v ) = 1− α
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Confidence interval mean

• A 95% confidence interval for µy is an interval that contains the true
value of µy in 95% of repeated samples.

• 95% confidence interval: µy = {Ȳ + /− 1.96SE (Ȳ )}
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Confidence interval in Stata

. mean popgrowth

Mean estimation                     Number of obs    =      68

                    Mean   Std. Err.     [95% Conf. Interval]

   popgrowth    .9720588   .1129236      .7466624    1.197455

The 95% confidence interval for the mean is automatically reported. You
can get another confidence interval by adding the option for level to the
command.

. mean popgrowth, level(90)

Mean estimation                     Number of obs    =      68

                    Mean   Std. Err.     [90% Conf. Interval]

   popgrowth    .9720588   .1129236      .7837118    1.160406

Using the lifeexp.dta
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Hypothesis testing
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Hypothesis testing

Potential questions:

• Does the increase of Co2 concentration increase the average
temperature?

• Are females discriminated against in hiring decisions?

• Are taller people paid more?

The method for answering such questions using a sample of data is known
as hypothesis testing.
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Hypothesis (1)

• An hypothesis is a statement about the true value of a parameter of
interest.

• For example it can be a conjecture about the true value of the
population average of Y.

• The statement to be tested is typically called the null hypothesis and
is denoted H0

• The hypothesis against which the null is tested is called the
alternative hypothesis typically denoted H1 or HA and should hold
whenever the null doesn’t hold.

• We use data to compare the null hypothesis to the alternative
hypothesis.
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Example hypothesis

The null hypothesis about the population mean is that it is µY ,0, thus we
can write it as:

H0 : E (Y ) = µY ,0

We can formulate three alternative hypotheses:

• The true value is larger than the null hypothesis value (1-sided.)

• The true value is smaller than the null hypothesis value (1-sided.)

• The true value is different (smaller or larger) from the null hypothesis
value (2-sided.)

Important:

Rejecting the null hypothesis does not imply accepting the alternative.
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Hypothesis (2)

In hypothesis testing we can make two kinds of mistakes.

Errors in statistical hypothesis tests

Type I error: Rejecting the null hypothesis when it is true.
Type II error: Not rejecting the null hypothesis when it is false.

• The probability of a Type I error is called the significance level,
usually denoted by α

• The power of the test is one minus the probability of a Type II error.

Classical hypothesis testing requires that we initially specify a significance
level for a test and then maximize the power of the test against the
relevant alternatives.
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Significance level

Significance level

The prespecified rejection probability of a statistical hypothesis test when
the null hypothesis is true.

Significance probability

The probability of drawing a statistic at least as adverse to the null
hypothesis as the one you actually computed in your sample, assuming
that the null hypothesis is correct.
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Power

Power

The probability that a test correctly rejects the null hypothesis when the
alternative is true.

• Power = 1-P(type II error)
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Example (2)

• To evaluate the hypothesis about the population mean the sample
average is compared to the hypothesized value.

• The sample average (Ȳ ) can differ from the hypothesized value (µy ,0)
either because:

• The null hypothesis is false, i.e. the true mean does not equal µy ,0

• Random sampling, i.e. the true mean does equal µy ,0, but the sample
average differs from the true value due to the nature of random
sampling.
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Notation

Summary measures
Preliminaries

Standard notation

Estimated from Parameter from
the sample the population

Mean bµx µx
Variance bσ2

x σ2
x

Standard Deviation bσx σx
Size n N

We estimate parameters to describe a population using the sample.

The "hats" represent statistics estimated using the sample.

What properties should these statistics have?

• Ŷ is the estimate of the parameter Y
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Notation

Standard deviation and standard error

• (σ) - Population standard deviation, the true standard deviation in
the population.

• Sample standard deviation: (s) An estimate of the population
standard deviation.

• sy is the estimate for population standard deviation for the random
variable Y.

• Standard error of an estimator: An estimate of the standard deviation
of the estimator.

• SE (Ȳ ) = σ̂Ȳ = sy/
√
n is the standard error of sample mean, which is

an estimate of the standard deviation of Ȳ .

• The sample mean is an estimator of the population mean.
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Notation in the book

Population parameter Sample statistic

µ = Population mean Ȳ = Sample estimate of
population mean

σ = Population standard deviation s=sample standard deviation,
estimator of σ

σȳ = Standard deviation of Ȳ SE (Ȳ ) = σ̂ȳ=Standard error of Ȳ
estimator of σȳ .
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Summary

• Reviewed different types of distributions where the area under the
p.d.f gives you probabilities.

• Learned to use statistical tables to obtain these probabilities (seminar
1)

• The normal, chi-square, student-t and F-distributions are the main
distributions in this course.

• Learned about confidence intervals and hypothesis testing.

• Looked at the notation in this course.
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Exercises

• Assume that the null hypothesis is chi-square distributed under the
null hypothesis with 30 degrees of freedom. The relevant test statistic
is 40. Can we reject the null at 5% significance?

• Assume that the nul hypothesis is t-distributed with 25 degrees of
freedom. With a test statistic of 3.0. Can you at 1% significance
reject H0?

• Assume that the distribution under the null hypothesis is F4,60 and
the test statistic is 5.0. Can you reject the null at 5% significance?
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Exercises

Assume that heights of women are distributed normally with mean 168
and a standard deviation of 6 cm. What is the probability that a woman is
between 160 and 170 cm tall?
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