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Estimation of MLRM
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OLS estimation of MLRM

The procedure for obtaining the estimates is the same as with one
regressor. Choose the estimate that minimize the sum of squared errors.

min
n∑

i=1

û2
i

• The estimates β̂0, β̂1 and β̂2 are chosen simultaneously to make the
squared error as small as possible.

• The i subscript is for the observation number, the second subscript is
for the variable number.

• βj is the coefficient on variable number j.

• In the general form we have k independent variables, thus k+1 first
order conditions.
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OLS estimation of MLRM

If k=2 then minimize:

S(β0, β1, β2) =
n∑

i=1

(Yi − β0 − β1X1i − β2X2i )
2

The solution to the FOCs give you:

• The ordinary least square estimators (β̂0, β̂1, β̂2) of the true
population coefficients (β0, β1, β2).

• The predicted value Ŷ of Yi given X1i and X2i .

• The OLS residuals ûi = Yi − Ŷi .
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OLS estimation of MLRM

The OLS fitted values and residuals have the same important properties as
in the simple linear regression:

• The sample average of the residuals is zero and so Ȳ = ¯̂Y

• The sample covariance between each independent variable and the
OLS residuals is zero. Consequently, the sample covariance between
the OLS fitted values and the OLS residuals is zero.

• The point (X̄1, X̄2, ..., X̄k , Ȳ ) is always on the OLS regression line.

6 / 49



Properties of the MLRM OLS estimator

• Under the OLS assumptions the OLS estimators of MLRM are
unbiased and consistent estimators of the unknown population
coefficients.

E (β̂j) = βj , j = 0, 1, 2, ...k

• In large samples the joint samling distribution of β̂0, β̂1, ...β̂k is well
approximated by a multivariate normal distribution.

• Under the OLS assumptions, including homoskedasticity, the OLS
estimators β̂j are the best linear unbiased estimators of the population
parameter βj .

• Under heteroskedasticity the OLS estimators are not necessarily the
one with the smallest variance.
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Consistency

Clive W. J. Granger (Nobel Prize-winner) once said:

If you can’t get it right as n goes to infinity you shouldn’t be in
this business.

• Consistency involves a thought experiment about what would happen
as the sample size gets large. If obtaining more and more data does
not generally get us closer to the parameter of interest, then we are
using a poor estimation procedure.

• The OLS estimators are inconsistent if the error is correlated with any
of the independent variables.
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Variance of the OLS estimator

Under the OLS assumptions, conditional on the sample values of the
independent variables:

var(β̂j) =
σ2∑n

i=1(Xij − X̄j)2(1− R2
j )
, j = 0, 1, 2, ..., k,

• Where R2
j is the R-squared from regressing xj on all other

independent variables.

• As in the SLRM the OLS variance of β̂1 depend on the variance of
the error term and the sample variance in the independent variable.

• In addition it depends on the linear relationship among the
independent variables R2

j
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Variance of the OLS estimator

Figure: From Wooldrigde 2009
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Variance of the OLS estimator

Blue: error distributed normal with mean 0 and standard deviation 10.
Red: Error distributed normal with mean 0 and standard deviation 3.
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Estimate variance

If σ2 is not known we need to estimate it:

σ̂2 =
1

n − k − 1

n∑
i=1

û2
i

• Higher variance gives higher standard errors, lower precision due to
more noise.
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Added OLS assumption

Normality assumption

The population error u is independent of the explanatory variables and is
normally distributed with zero mean and variance σ2 : u ∼ Normal(0, σ2)

If the other OLS assumptions plus this one holds the OLS estimator has an
exact normal sampling distribution and the homoskedasticity only
t-statistic has an exact Student t distribution.

• The OLS estimators are jointly normally distributed.

• Each β̂j is distributed N(βj , σ
2
β̂j

).
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Simulation

A simulation is a fictitious computer representation of reality. Steps in
simulation:

1 Choose the sample size n

2 Choose the parameter values and functional form of the population
regression function.

3 Generate n values of x randomly in Stata

4 Choose probability distribution of the error term and generate n
values of u

5 Estimate the model

6 Repeat step 1 through 5 multiple times and look at the summary
statistics over the repetitions.
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Monte Carlo simulation
Example: A random realization of X and u for 100 observations with the
true population function: Y = 10 + 5x + u.

How does OLS perform in estimating the underlying population function?
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Simulation
  Thursday January 29 11:18:16 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . reg y x

      Source        SS       df       MS              Number of obs =      100
           F(  1,    98) =  2376.86

       Model   2438.45884     1  2438.45884           Prob > F      =  0.0000
    Residual    100.53965    98  1.02591479           R-squared     =  0.9604

           Adj R-squared =  0.9600
       Total   2538.99849    99  25.6464494           Root MSE      =  1.0129

           y       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

           x     4.86004   .0996868    48.75   0.000     4.662214    5.057865
       _cons    9.951091   .1013099    98.22   0.000     9.750045    10.15214

The coefficients are close to the true population coefficients.
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Simulation

So running one simulation got us close to the estimate, how if we simulate
1000 times? Gives us 1000 estimates for β0 and β1
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Simulation
  Thursday January 29 11:31:09 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . sum 

    Variable        Obs        Mean    Std. Dev.       Min        Max

        _b_x       1000    5.000788    .1048841   4.679994   5.318002
     _b_cons       1000    9.997947    .0994027   9.696664   10.33181

The estimated OLS coefficients approximate to the true population
coefficient. Thus OLS gives an unbiased estimate for the slope coefficient
and the constant term.
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Simulation: Bias

Another example. Suppose that the population is characterized by:

y = 3− 2x1 + u

• β0 = 3

• β1 = −2

• u is distributed normal, mean 0 and standard deviation 3.

• x’s are between 0.01 and 10 spaced evenly

• n= 1000

Estimate using y = β0 + β1x1 + u and plot y on X.
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Simulation: Bias
Scatterplot of the simulated data:
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Simulation: Bias

How to make the scatter plot in Stata:

.  *drop any observations that are currently in memory. 

.  set obs 1000
obs was 0, now 1000

.  *In the runs of the regression we want there to be .. observations. 

.  gen u=rnormal(0,3)

.  *generates distributions of x

. range x 0 10 1000

. *Generate Y: 

. gen y=3-2*x+u

. 

. twoway (scatter y x, mfcolor(white) mlcolor(black)), graphregion(color(white)) 
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Simulation: Bias

Suppose that we sample 30 people from the population and estimate β1
via OLS

• First sample β̂1 = −1.951

• Second sample: β̂1 = −1.890

• Second sample: β̂1 = −1.559

None of them equals the population parameter of 2. Is this a problem?
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Simulation: Bias

Keep sampling! If we sample 1000 times we get the following histogram of
the estimates of β1.
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Variance observations

10 observations repeated on 1000 samples with model from example 2:

  Thursday January 29 12:21:58 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 .  
2 .  sum

    Variable        Obs        Mean    Std. Dev.       Min        Max

        _b_x       1000    4.997962    .3770747   3.270008   6.512727
     _b_cons       1000    10.01276    .3351356   8.923193   11.20773

100 observations repeated on 1000 samples.

  Thursday January 29 11:31:09 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . sum 

    Variable        Obs        Mean    Std. Dev.       Min        Max

        _b_x       1000    5.000788    .1048841   4.679994   5.318002
     _b_cons       1000    9.997947    .0994027   9.696664   10.33181
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Simulation

The errors are not normally distributed with mean 0, but with mean 3. So
u ∼ N(3, 1)

  Thursday January 29 11:46:50 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

    Variable        Obs        Mean    Std. Dev.       Min        Max

        _b_x       1000    4.998194    .0975124    4.67178   5.298087
     _b_cons       1000     13.0041    .1030487   12.65324   13.33964

• As long as X and u are uncorrelated β̂1 is unbiased.

• The constant term and the error term is correlated in this situation so
β0 is biased.
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Simulation: Heteroskedasticity

By assumption the variance of errors is common across x.
(homoskedasticity assumption).

Which graph illustrates a violation of this assumption?
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Measures of fit
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Goodness of fit

• SST, SSE and SSR is defined exactly as in the simple regression case.

• Which means that the R2 is defined the same as in the regression
with one regressor.

• However R2 never decrease and typically increase when you add
another regressor as you explain at least as much as with one
regressor.

• This means that an increased R2 not necessarily means that the
added variable improves the fit of the model.
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The adjusted R-squared

• The adjusted R-squared is introduced in MLRM to compensate for
the increasing R-squared.

• The adjusted R-squared includes a ”penalty” for including another
regressor thus R̄2 does not necessarily increase when you add another
regressor.

R̄2 = 1−
(

n − 1

n − k − 1

)
SSR

TSS
(1)
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Properties of R̄2

• Since n−1
n−k−1 < 1 → R2 > R̄2

• Adding a variable may decrease or increase R̄ depending on whether
the increase in explanation is large enough to make up for the penalty

• R̄2 can be negative.
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Note on caution about R2/R̄2

• The goal of regression is not to maximize R̄2 (or R2) but to estimate
the causal effect.

• R2 is simply an estimate of how much variation in y is explained by
the independent variables in the population.

• Although a low R2 means that we have not accounted for several
factors that affect Y, this does not mean that these factors in u are
correlated with the independent variables.

• Whether to include a variable should thus be based on whether it
improves the estimate rather than whether it increase the fraction of
variance we can explain.

• A low R2 does imply that the error variance is large relative to the
variance of Y, which means we may have a hard time precisely
estimating the βj .

• A large error variance can be offset by a large sample size, with
enough data one can precisely estimate the partial effects even when
there are many unobserved factors.
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The standard error of the regression

Remember that the standard error of the regression (SER) estimates the
standard deviation of the error term ui :

SER = sû =
√

s2û where s2û =
1

n − k − 1

n∑
i=1

û2
i =

SSR

n − k − 1
(2)

The only difference from the SLRM is that the number of regressors k is
included in the formula.
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Heteroskedasticity and OVB

• Heteroskedasticity is likely to occur in data sets in which there is a
wide disparity between the largest and smallest observed values.

• Pure heteroskedasticity is caused by the error term of a correctly
specified equation.

• Impure heteroskedasticity is heteroskedasticity caused by an error in
specification, such as an omitted variable.
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Overspecification

• The OVB problem may lead you to think that you should include all
variables you have in your regression.

• If an explanatory variable in a regresion model has a zero population
parameter in estimating an equation by OLS we call that variable
irrelevant.

• An irrelevant variable has no partial effect on y.

• A model that includes irrelevant variables is called an overspecified
model.

• An overspecified model gives unbiased estimates, but it can have
undesirable effects on the variances of the OLS.
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Controlling for too many factors

• In a similar way we can over control for factors.

• In some cases, it makes no sense to hold some factors fixed, precisely
because they should be allowed to change.

• If you are interested in the effect of beer taxes on traffic fatalities it
makes no sense to estimate:

fatalities = β0 + β1tax + β2beercons + ....

• As you will measure the effect of tax holding beer consumption fixed,
which is not particularly interesting unless you want to test for some
indirect effect of beer taxes.
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Measurement of variable
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Effects of data scaling on OLS

Consider an example

ˆbwght = β̂0 + β̂1cigs + β̂2faminc

where:

• bwght = child birth weights, in ounces.

• cigs = number og cigarettes smoked by the mother while pregnant,
per day

• faminc = annual family income, in thousands of dollars

using bwght.dta
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Effects of data scaling on OLS
  Wednesday February 4 14:37:02 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . reg bwght cigs faminc

      Source        SS       df       MS              Number of obs =     1388
           F(  2,  1385) =    21.27

       Model   17126.2088     2  8563.10442           Prob > F      =  0.0000
    Residual   557485.511  1385  402.516614           R-squared     =  0.0298

           Adj R-squared =  0.0284
       Total    574611.72  1387  414.283864           Root MSE      =  20.063

       bwght       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

        cigs   -.4634075   .0915768    -5.06   0.000    -.6430518   -.2837633
      faminc    .0927647   .0291879     3.18   0.002     .0355075    .1500219
       _cons    116.9741   1.048984   111.51   0.000     114.9164    119.0319
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Effects of data scaling on OLS

Alternatively you can specify the model in grams so that
bwghtgram = bwght28.35 Then:

ˆbwght/16 = β̂0/16 + (β̂1/16) ∗ cigs + (β̂1/16)faminc

• So it follows from previous lectures that each new coefficient will be
the corresponding old coefficient divided by 16.

• If you wanted grams each coefficient would be multiplied by 28.349

• Once the effects are transformed into the same units we get exactly
the same answer, regardless of how the dependent variable is
measured.
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Effects of data scaling on OLS

Alternatively one could measure cigs in cigarette packs instead. Then:

ˆbwght = β̂0 + β̂1(20 ∗ cigs/20) + β̂2faminc

ˆbwght = β̂0 + 20β̂1(packs) + β̂2faminc (3)

The only effect is that the coefficient on packs is 20 times higher than the
coefficient on cigarettes, and so will the standard error be.
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Effects of data scaling on OLS
The below figure show the three regressions including the goodness of fit
measures.

• The R2 from the three regressions are the same (as they should be).

• The SSR and SER differ in the second specification from the two
others.

• Remember SSR is measured in squared units of the dependent
variable, while SER is measured in units of the dependent variable.
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Standardizing variables

• Sometimes a key variable is measured on a scale that is difficult to
interpret.

• An example is test scores - tests can be arbitrarily scored

• Then it can make sense to ask what happens if test score is one
standard deviation higher.

• A variable is standardized by subtracting off its mean and dividing by
the standard deviation.

• You can make a regression where the scale of the regressors are
irrelevant by standardizing all the variables in the regression.
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Standardizing variables

Suppose we start with the model:

Y = β0 + β1X + u (4)

Take the mean of the entire equation:

µ̂u = β0 + β1µ̂x (5)

Subtract 1 from 2 and

(Y − µ̂y ) = β1(x − µ̂x) + u

Divide both sides by σ̂y and multiply β1 by σ̂x/σ̂x and manipulate such
that:

(y − ûy )

σ̂y
=
σ̂x
σ̂y
β1

(x − µ̂x)

σ̂x
+

1

σ̂y
u

y s = β̃1x s + ũ
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Standardizing variables

• Note: the coefficients and standard errors change

• The t-statistics, p-values and R2 do not change

• Standardizing variables allows a comparison of size of coefficients
across variables.
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Dummy variables in MLRM

• The multiple regression model allows for using several dummy
independent variables in the same equation.

• In the multiple regression model a dummy variable gives an intercept
shift between the groups.

• If the regression model is to have different intercepts for, say, g
groups or categories, we need to include g-1 dummy variables in the
model along with an intercept.

• The intercept for the base group is the overall intercept in the model

• The dummy variable coefficient for a particular group represents the
estimated difference in intercepts between that group and the base
group.

• An alternative is to suppress the intercept, but it makes it more
cumbersome to test for differences relative to a base group.
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Dummy variables in MLRM

 𝑝𝑟𝑖𝑐𝑒 = 𝛽0 + 𝛽1𝑤𝑒𝑖𝑔ℎ𝑡 + 𝛽2𝐹𝑜𝑟𝑒𝑖𝑔𝑛 

               

Slope=  𝛽1 

  𝛽0 

  𝛽0 + 𝛽2 
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Dummy variables in MLRM

• Variables which are ordinal can either be entered to the equation in
its form or you can create a dummy variable for each of the values.

• Creating a dummy variable for each value allow the movement
between each level to be different so it is more flexible than simply
putting the variable in the model.

• F.ex you can have a credit rate ranking between 0 and 4. Then you
can include 4 dummy variables in your regression.
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Alternative specification OLS

The OLS minimization problem:

S(β0, β1) =
n∑

i=1

(Yi − β0 − β1xi )
2

can alternatively be written as:

S(α, β1) =
n∑

i=1

(Yi − α− β1(Xi − X̄ ))2

where the intercept parameter is redefined to: α = β0 + β1X̄
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Alternative specification OLS

∂S(α, β1)

∂α
= −2

n∑
i=1

[Yi − α− β1(Xi − X̄ )]

∂S(α, β1)

∂β1
= −2

n∑
i=1

[Yi − α− β1(Xi − X̄ )] ∗ (Xi − X̄ )

α̂ and β̂1 are the values of α and β1 for which the FOC is equal to zero.
Solution:

α̂ = Ȳ = β̂0 + β̂1X̄

and β1 as before.
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