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Lecture outline

e OLS assumptions and when they are violated
o Instrumental variable approach

¢ 1 endogenous regressor & 1 instrument

IV assumptions:

e instrument relevance
e instrument exogeneity

1 endogenous regressor, 1 instrument & control variables

1 endogenous regressor & multiple instruments

multiple endogenous regressors & multiple instruments



Introduction

Yi=Bo+ B X+ U
The 3 assumptions of an OLS regression model:
O E(uilX)=0
@ (X, Y),i=1,..N are independently and identically distributed

© Big outliers are unlikely.

Threats to internal validity (violation of 1st OLS assumption):

Omitted variables

e Functional form misspecification

Measurement error

Sample selection

Simultaneous causality



Introduction

Yi=Bo+ B Xi+ uj

We can use OLS to obtain consistent estimate of the causal effect if

X—— Y

v

We can’t use OLS to obtain consistent estimate of the causal effect if

I/

Y XY

e

and/or
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Instrumental variables: 1 endogenous regressor & 1 instrument

Yi= B0+ B1Xi+ uj
e Potential solution if E[u;|Xi] # 0 : use an instrumental variable (Z)
e We want to split X; into two parts:

© part that is correlated with the error term (causing E[u;|x;] # 0)
@ part that is uncorrelated with the error term

e |f we can isolate the variation in X; that is uncorrelated with u;...

e ...we can use this to obtain a consistent estimate of the causal effect of
XionY;
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Instrumental variables: 1 endogenous regressor & 1 instrument

e |n order to isolate the variation in X; that is uncorrelated with u; we can
use an instrumental variable Z; with the following properties:

© Instrument relevance: Z; is correlated with the endogenous regressor
Cov(Z, X)) #0

@ Instrument exogeneity: Z is uncorrelated with the error term
Cov(Z;, u;) = 0 and has no direct effect on Y;

Y

N
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Instrumental variables: 1 endogenous regressor & 1 instrument

We can extend the linear regression model

Yi = Bo+ b1 X+ uj Xi =m0+ mZ + Vi

We can estimate the causal effect of X; on Y; in two steps:
First stage:  Regress X; on Z; & obtain predicted values X =70+ 127
e If Cov(Z, u;) = 0, X; contains variation in X; that is uncorrelated with ;

Second stage: Regress Y on X; to obtain the Two Stage Least Squares
estimator Bags :




Application: estimating the returns to education

e Data from the NLS Young Men Cohort collected in 1976 on (among
others) wages and years of education for 3010 men.

e Data are provided by Professor David Card, he used the data in his
article "Using Geographic Variation in College Proximity to Estimate the
Return to Schooling"

. regress In_wage education, robust

Linear regression Number of obs = 3010
FC 1, 3008) = 321.16
Prob > F = 0.0000
R-squared = 0.0987
Root MSE = .42139
Robust

In_wage Coef. Std. Err. t P>|t] [95% Conf. Interval]
education .0520942 .0029069 17.92 0.000 .0463946 .0577939
_cons 5.570882 .0390935 142.50 0.000 5.49423 5.647535

e OLS estimate of the returns to education likely inconsistent due to
omitted variables and measurement error.



Application: estimating the returns to education

o We want to isolate variation in years of education that is uncorrelated
with the error term

e Card (1995) uses variation in college proximity as instrumental variable

e We have the following instrumental variable

1 if individual grew up in area with a 4-year college

near_college= 0 if individual grew up in area without a 4-year college

Step 1: First stage regression

. regress education near_college, robust

Linear regression Number of obs = 3010
FC 1, 3008) = 60.37

Prob > F = 0.0000

R-squared = 0.0208

Root MSE = 2.6494

Robust
education Coef. Std. Err. t P>|t] [95% Conf. Interval]

near_college .829019 -1066941 7.77 0.000 .6198182 1.03822
_cons 12.69801 -0902199 140.75 0.000 12.52112 12.87491




Application: estimating the returns to education

Step 2: Obtain the predicted values and perform the second stage

regression

1 . predict pr_education, xb

2 . regress In_wage pr_education, robust

Linear regression Number of obs = 3010
FC 1, 3008) = 83.79

Prob > F = 0.0000

R-squared = 0.0268

Root MSE = .43789

Robust
In_wage Coef. Std. Err. t P>]t] [95% Conf. Interval]

pr_education .1880626 .0205454 9.15 0.000 .1477781 .2283472
_cons 3.767472 .2724927 13.83 0.000 3.233181 4.301763
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Instrumental variables: 1 endogenous regressor & 1 instrument

Regression Y; on X; gives the 2SLS estimator
Sy (Y- V) (X - X)
>0 (%= %)
If we substitute X, — X = (7o +712) — (o + m2) =71 (Z — Z) we get

PasLs =

S (Yi-Y)m (Zf—7> B
S (2-2)°

S (vi-Y) (2-2)
s, (z-2)°

X

D=

BosLs =

Since 7 is the first stage OLS estimator:
Sh(z-2)  sh(-9)(z-2)
Sh-X)(z2-2)  sn,(z-2)°

BasLs =

Which gives the instrumental variable estimator
27:1 (Yf - V) (Zf *?)
v = n — —
S (x-X) (2-2)




e We can obtain the 2SLS estimator in two steps as we have seen

e However the standard errors reported in the second stage regression
are incorrect

o Stata does not recognize that it is a second stage of a two stage
process, it fails to take into account the uncertainty in the first stage
estimation.

o Instead obtain the 2SLS-estimator in 1 step:

. ivregress 2sls In_wage (education=near_college), robust

Instrumental variables (2SLS) regression Number of obs = 3010
Wald chi2( 1) = 51.78
Prob > chi2 = 0.0000
R-squared = .
Root MSE = .55667
Robust
In_wage Coef. Std. Err. z P>|z] [95% Conf. Interval]
education .1880626 .0261339 7.20 0.000 .1368412 .2392841
_cons 3.767472 .3466268 10.87  0.000 3.088096 4.446848
Instrumented: education
Instruments: near_college
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Instrumental variables: 1 endogenous regressor & 1 instrument

. SL(i-Y)(2-2)
Biv = - —
S (% -X) (2-2)

In large samples the IV-estimator converges to

.~ Cov(Yi,Zi)  Cov(Bo+ B1 X+ ui, Z)
PIM(BV) = CoviX. 2y~ Cov(X,Z)

Cov(u, Z)
Cov(Xi, Z)

=B+

If the two IV-assumptions hold

© Instrument relevance: Cov(Z, X;) # 0
@ Instrument exogeneity: Cov(Z, u;) =0

The IV-estimator is consistent plim(5)v) = 51, and is normally distributed in
large samples

(5, 1V 1E 2]
Biv N<f8" n [Cov(Z,X))? )
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Instrumental variables: 1 endogenous regressor & 1 instrument

The Instrumental Variables estimator is not unbiased

Ela] - £|ERRES

[ S ((Bo+B1 Xi+u)—(Bo+81X+1) ) (Z-2Z)
L (%-X)(2-2)

_ E [ 8y 0, (Xi—X)(2-2)+ S0 (u—-0)(Z-2)
- I S (%6-x)(Z-2)

L 0E2) =1 (- 0(2-2)

i=1

- ﬂ1+5[%M——W}Zﬁ1+E{M]

_ Sy ElyilZ,%1(Z-2)
= +E“{ 1 (0-%)(2-2) }

7 P

Instrument exogeneity implies E[u;|Zj] = 0 but not E[u;|Z;, Xj] = 0 (this would
mean that E[u;| Xj] = 0 and we would not need an instrument!)
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Instrumental variables: 1 endogenous regressor & 1 instrument

How can we know whether the IV assumptions hold?

© Instrument relevance: Cov(Z, X;) # 0

e We can check whether instrument relevance holds.

Cov(Z;, X;)

e Note that 1 = Var(Z)

e We can therefore test Hy : m1 = 0 against Hy : m #0

@ Instrument exogeneity: Cov(Z;, u;) =0

e We can’t check whether this assumption holds.

e We need to use economic theory, expert knowledge and intuition.
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Instrument relevance & weak instruments

Clearly, an irrelevant instrumental variable has problems, recall that

Cov(Y), Zi)

Pasts — Cov(X,.2)

In case of an irrelevant (but exogenous) instrumental variable both the
denominator and numerator are 0.

If instrument is not irrelevant but Cov(X;, Z) is close to zero

e The sampling distribution of BQSLS is not normal

° BgsLs can be severely biased, in the direction of the OLS estimator,
even in relatively large samples!

We should therefore always check whether an instrument is relevant
enough.
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Instrument relevance & weak instruments

o |et Fyg be the F-statistic resulting from the test Hy : w1 = 0 against
H1 IS # O

e Staiger & Stock (Econometrica, 1997) show that in a simple model #{si

provides approximate estimate of finite sample bias of Bosis relative to
BoLs

e Stock & Yogo (2005) argue that instruments are weak if the IV Bias is

more than 10% of the OLS Bias.

o Rule of thumb: the F-statistic for (joint) significance of the instrument(s)
in the first-stage should exceed 10.
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Application: estimating the returns to education

Do the instrumental variable assumptions hold for college proximity as an
instrument to estimate the returns to education?

© Instrument relevance/weak instruments

Robust
education Coef. Std. Err. t P>]t] [95% Conf. Interval]

near_college .829019 -1066941 7.77 0.000 .6198182 1.03822

_cons 12.69801 .0902199 140.75 0.000 12.52112 12.87491
. test near_college
(1) near_college = 0

F( 1, 3008) = 60.37

Prob > F = 0.0000

@ Instrument exogeneity:

e |Is there a direct effect of living near a 4 year college on earnings?
e |s college proximity related to omitted variables that affect earnings?
e What about area characteristics, such as living in a big city instead
of a small village?
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1 endogenous regressor, 1 instrument & control variables

o We can weaken the instrument exogeneity assumption by including area
characteristics as control variables

e The Instrumental variables model is extended by including the control
variables Wy;, ..., Wy

Yi=Bo+ B1Xi+ o Whi+, ..., +0, Wy + u;
Xi=mo+mZi+yWi+...+ywWi+v

e The Instrument exogeneity condition is now conditional on the included
regressors W, ..., W

Cov (Z;, uj|Whj, ..., W;) =0

o In the returns to education example we will include the following control
variables:

e age and age squared

e south equals 1 if an individuals lives in the southern part of the U.S.

e smsaequals 1 if an individual lives in a Standard Metropolitan
Statistical Area



Application: estimating the returns to education

Control variables must also be included in the first stage regression:

1 . regress education near_college age age2 south smsa, robust

Linear regression Number of obs = 3010
FC 5, 3004) = 40.82
Prob > F = 0.0000
R-squared = 0.0710
Root MSE = 2.5822
Robust
education Coef. Std. Err. t P>|t] [95% Conf. Interval]
near_college .3567396 -1117581 3.19 0.001 .1376095 .5758696
age 1.077846 .3044035 3.54 0.000 .4809854 1.674706
age2 -.0189181 .0052999 -3.57 0.000 -.0293099 -.0085264
south -.8953645 .0987761 -9.06 0.000 -1.08904 -.7016888
smsa .7962275 .1156382 6.89 0.000 .5694895 1.022965
_cons -2.349802 4.329293 -0.54 0.587 -10.83848 6.138875
2 . test near_college
( 1) near_college = 0
FC 1, 3004) = 10.19
Prob > F = 0.0014

Don’t use the overall F-statistic, this also tests whether the coefficients on the

control variables equal zero!



Application: estimating the returns to education

IV estimates with control variables

. ivregress 2sls In_wage (education=near_college) age age2 south smsa, robust

Instrumental variables (2SLS) regression Number of obs = 3010
Wald chi2( 5) = 757.69
Prob > chi2 = 0.0000
R-squared = 0.1510
Root MSE = .40884
Robust

In_wage Coef. Std. Err. z P>]z]| [95% Conf. Interval]
education .0954681 .0481396 1.98 0.047 .0011163 .1898199
age .0815643 .0702011 1.16 0.245 -.0560274 .2191559
age2 -.0007088 .0012218 -0.58 0.562 -.0031034 .0016859
south -.1277804 .0478661 -2.67 0.008 -.2215962 -.0339646
smsa .1038856 .0472 2.20 0.028 .0113752 1963959
_cons 3.246947 .7048721 4.61 0.000 1.865423 4.628471

Instrumented: education
Instruments: age age2 south smsa near_college

e Estimated return to an additional year of education is now 9.5%

e Do we believe that instrument exogeneity holds now that we have
included control variables?
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1 endogenous regressor, multiple instruments

e Instead of 1 instrument we can also use M > 1 instruments
e We could calculate M different IV-estimates of 3

e Since any linear combination of the Z; is again a valid instrument:
e combine the Z,; to get a more efficient estimator of

Yi=Bo+ B1Xi + 61 Whit, ..., +6: Wy + U
Xi=mo+mZi+...tmlmi + 1 Whi+ ...+ v Wi+ vi

e Instrumental variable assumptions:

@ Instrument relevance: at least one of the instruments Zy;, .. ., Zui
should have a nonzero coefficient in the population regression of X; on
Z1,‘7 . ,ZM,'.

@ Instrument exogeneity:
Cov(Zij,u)) = Cov(Zi, uj) = ... = Cov(Zui, ui) = 0



23

Application: estimating the returns to education

e The data set contains two potential instruments for years of education:

1 if individual grew up in area with a 2-year college

near_2yrcollegeé= g it individual grew up in area without a 2-year college

1 if individual grew up in area with a 4-year college

near_4yrcollege= 0 if individual grew up in area without a 4-year college

e To check for instrument relevance we should estimate the first stage
regression, including both instruments

e And use an F-test to test for the joint significance of the two instruments.



Application: estimating the returns to education

Linear regression Number of obs = 3010

FC 6, = 34.03

Prob > F = 0.0000

R-squared = 0.0710

Root MSE = 2.5827

Robust

education Coef. Std. Err. P>]t] Interval]
near_4yrcol lege .3573365  .1121497 .19 0.001 -1374385 .5772345
near_2yrcollege -.0110908 .0976786 11 0.910 -.2026145 .1804329
age 1.077147 .3045554 .54 0.000 .4799884 1.674305
age2 -.0189051 .0053029 57  0.000 -.0293028 -.0085074
south -.8964387 -0991639 04 0.000 -1.090875 -.7020027
smsa .797801 .1167322 .83  0.000 .5689179 1.026684
_cons -2.336789  4.331927 54  0.590 -10.83063 6.157055

near_4yrcollege - near_2yrcollege
( 2) near_4yrcollege = 0
F( 2, 3003) =
Prob > F =

5.09
0.0062

. test near_4yrcollege=near_2yrcollege=0

(@0

only 1 instrument near_4yrcollege

e The first-stage F-statistic is well below 10, which indicates that we have
weak instrument problems!

e |tis better to drop the weakest instrument, near_2yrcollege, and use
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Overidentifying restrictions test (Sargan test, J-test)

o With more instruments than endogenous regressors we can test
whether a subset of the instrument exogeneity conditions is valid.

e Suppose we have two instruments. Given our structural equation
Yi=Bo+ B1Xi + s Whi+, ..., +0, Wri + U

and assuming that Cov(Z;, u;) = 0 we can test whether
Cov(Z;, u;) = 0 (or vice versa, but not both!)

e |ntuition is as follows:

o since Cov(Z;,u)) = 0: B3 — B

o IF Cov(Z, u;) = 0 then also A2). —

o Testing whether Cov(Zs;, u;) = 0 is equivalent to testing 52)s = A1)
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Overidentifying restrictions test (Sargan test, J-test)

We can implement the test is as follows

o Estimate Y; = Bo + ﬂ1X, + 04 VV1,'—|—, ..., 40 W, + u; by 2SLS using Zii
and Z,; as instruments

© Obtain the residuals 75 = Y; — By + B X; + 6 Wai+, ..., +0, Wy
¢ Note: use the true X; and not the predicted value X;

© Estimate the following regression
U5 =mo+m - Zii 2 Zoi + +or Waik, o o Wei + &
@ And obtain the F-statistic of the test
Ho: m=m=0  versus Hi:n #0and/orn #0
© Compute the J-test statistic
J=mF ~ Xs

where g is number of instruments minus number of endogenous
regressors (in this case 1)



Application: estimating the returns to education

1 . ivregress 2sls In_wage (education=near_4yrcollege near_2yrcollege) age age2 south smsa,

Instrumental variables (2SLS) regression Number of obs = 3010
wald chi2( 5) = 766.83
Prob > chi2 = 0.0000
R-squared = 0.1609
Root MSE = .40646
Robust

In_wage Coef. Std. Err. z P>|z] [95% Conf. Interval]
education .0927438 .0477741 1.94 0.052 -.0008916 .1863792
age .0844422 .0696594 1.21 0.225 -.0520878 .2209722
age2 -.0007592 .0012123 -0.63 0.531 -.0031353 .0016169
south -.1303678 .0475011 -2.74 0.006 -.2234683 -.0372672
smsa .10638 .0468341 2.27 0.023 -0145869 .1981731
_cons 3.241778 .7006403 4.63  0.000 1.868548 4.615008

Instrumented: education
Instruments: age age2 south smsa near_4yrcollege near_2yrcollege

2 . predict residuals, resid



Application: estimating the returns to education

1 . regress residuals near_4yrcollege near_2yrcollege age age2 south smsa, robust

Linear regression Number of obs = 3010

FC 6, 3003) = 0.42

Prob > F = 0.8684

R-squared = 0.0008

Root MSE = .40676

Robust

residuals Coef. Std. Err. t P>|t] [95% Conf. Interval]
near_4yrcollege -.0003358 -0170653 -0.02 0.984 -.0337967 -0331252
near_2yrcollege .0242942 .0154024 1.58 0.115 -.0059061 .0544946
age .0015897 .0486995 0.03 0.974 -.093898 .0970775
age2 -.0000297 .0008437 -0.04 0.972 -.0016839 .0016245
south .002501 .015634 0.16 0.873 -.0281535 .0331555
smsa -.003772 .0174362 -0.22 0.829 -.0379601 .0304162
_cons -.0297385 .6960319 -0.04 0.966 -1.394486 1.335009

2 . test near_4yrcollege=near_2yrcollege=0

( 1) near_4yrcollege - near_2yrcollege = 0
( 2) near_4yrcollege = 0

FC 2, 3003)
Prob > F

1.24
0.2882

o J=mF=2-124=248
e 2.48 < 2.71 (critical value of x? at 10% significance level)
e So we do not reject the null hypothesis of instrument exogeneity.



Overidentifying restrictions test (Sargan test, J-test)

e Can we conclude that the two instruments satisfy instrument
exogeneity? NO!

e Although the J-test seems a useful test there are 3 reasons to be very
careful when using this test in practice

© When we don't reject the null hypothesis this does not mean that we can
accept it!

@® The power of the J-test can be low (probability of rejecting when H,
does not hold)

© The J-test tests the joint hypothesis of instrument validity and correct
functional form

© if the test rejects, the instruments might be valid but the functional
form is wrong

@ if the test rejects, the instruments might be valid but the effect of
the regressor of interest is heterogeneous 31; # i
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The general IV regression model

e So far we considered the case with 1 endogenous variable, but we can
extend the model to multiple endogenous variables

Yi= 0o+ B1Xii+ ...+ B Xai + 01 Whi+, ..., +6: Wy + u;

Xii = 7o + 7 Zii+ A w2+ Wi,y W+ V]

Xai = 7§ + 82+ o+ T2+ VWit A W+ v
e The general IV regression model has 4 types of variables

© The dependent variable Y;

® K (possibly) endogenous regressors Xij, . . ., Xki

© r control variables Wi;, ..., W, (not the variables of interest)
O M instrumental variables Zyj, . .., Zui
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The general IV regression model

o When there are multiple endogenous regressors the 2SLS algoritm is
similar except that each endogenous regressor requires its own first
stage.

e For IV regression to be possible there should be at least as many
instruments as endogenous regressors

e The model is said to be

Underidentified if M < K, we cannot estimate the model, the number of
instruments is then smaller that the number of
endogenous regressors

Exactly identified if M = K, the number of instruments equals the
number of endogenous regressors

Overidentified if M > K, the number of instruments exceeds the
number of endogenous regressors
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The general IV regression model

Assumptions of the general IV-model

@ Instrument exogeneity:
Cov(Zii, uj) = Cov(Zyi, u) = ... = Cov(Zui, uj)) =0

@ Instrument relevance:

o for each endogenous regressor Xjj, .. ., Xk, at least one of the
instruments Zyj, ..., Zy; should have a nonzero coefficient in the
population regression of the endogenous regressor on the
instruments.

e The predicted values and the control variables
(Xiiy -, Xi, Wi, ..., Wy, 1) should not be perfectly multicollinear.

O (Xii,..., Xui, Wi, ..., Wy, Zj, ..., 2, Y:) should be iid draws from their
joint distribution.

O Large outliers are unlikely: the X's, W’'s, Z’'s and Y have finite fourth
moments.
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Application: estimating the returns to education

Summary of results using college proximity as instrument:

oLSs 11V 11V 21V’s
without controls  with controls  with controls

IV results, log(earnings) as dependent variable

Education 0.052*** 0.188*** 0.095** 0.093*
(0.003) (0.021) (0.048) (0.048)
First stage regression
near 4yr college 0.829*** 0.357** 0.357***
(0.107) (0.112) (0.112)
near 2yr college -0.011
(0.098)
First stage F 60.37 10.19 5.09

*kK

* significant at 10%, ** significant at 5%, *** significant at 1%

e |s college proximity a valid instrument?
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Application: estimating the returns to education

o Another possible instrument for education is compulsory schooling laws

e Between 1925 and 1970 there were quite some changes in the
minimum school leaving age in the US

e these changes varied between states

e Oreopoulos (AER,2006) uses variation in minimum school leaving age
as instrument for years of schooling

e Main assumptions

e Changes in minimum school leaving age uncorrelated with
unobserved variables affecting education (such as ability)

¢ No direct effect of changes in minimum school leaving age on
wages

e Minimum school leaving age has a nonzero impact of years of
education
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Estimating returns to education

o Oreopoulos estimates the following first stage and second stage
equations:

Yist = BXist +vs + 7t + V,-lste + Ws/t/\ + Eist

’

Xist = mZst + 05 + 0t + V,';m + Wtk + pist

® Y is log wage of individual i living in state s in year t at age 14

® X is years of schooling of individual i living in state s in year t at age 14
e 7 is the minimum school leaving age in state sin year t

® s and §s are state fixed effects, v; and §; are year fixed effects

° V,’St are individual characteristics and Wslt are state characteristics
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Estimating returns to education

Results from Oreopoulos (2006)

OoLS First stage \Y
In(Earnings) Education In(Earnings)
Years of education 0.078*** 0.142**
(0.0005) (0.012)
Minimum school leaving age 0.110***
(0.007)

o First stage F-statistic: Fys = £ = (%110)% — 246.9
o |V estimate almost twice as high as OLS estimate, not what we expect

on basis of positive ability bias story

e Possible explanations:
e downward bias in OLS due to measurement error
¢ heterogeneity in the returns to education (IV estimates local
average treatment effect)



